Exploration of the relationship between time of myocardial infarction pain onset and the patients morningness-eveningness pattern
by Mary Ellen Fry Davis

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Nursing
Montana State University
© Copyright by Mary Ellen Fry Davis (1988)

Abstract:
The purpose of this study was to explore the relationship between a patient's morningness-eveningness pattern and the time of myocardial infarction (MI) pain onset. An ex post facto/correlational design was used to examine the research questions. Horne and Ostberg's Morningness-Eveningness Questionnaire (1976) (MEQ) was the tool used. The study determined morningness-eveningness pattern, evaluated trends in the time of MI pain onset, and tested the relationship of morningness-eveningness patterns and time of MI pain onset. The sample included 30 patients admitted with a diagnosis of myocardial infarction to the critical care units of a hospital in the northwestern United States.

Correlations were examined between the scores on the MEQ and the time of MI pain onset using Spearman Rank Order correlation test. The results of this test indicated there was no relationship between these two variables (rs=0.059, p>0.05). A trend in the time of MI pain onset was noted to occur between the hours of 6:00 a.m. and noon (57%).

Twenty-six of the participants (80%) fell into the morning type category, six (17%) into the intermediate category, and one (3%) into the evening category.

These results suggest that MIs tend to occur between 6:00 a.m. and noon without regard to morningness-eveningness pattern, although further validation will be required. An implication for nursing is to administer drugs and treatments during the hours of maximum therapeutic response and minimum adverse reactions. Also, the nurse may help the patient to alter his activity level so that myocardial oxygen requirement is, at a minimum during this time in an effort to reduce mortality and morbidity.
EXPLORATION OF THE RELATIONSHIP BETWEEN TIME OF
MYOCARDIAL INFARCTION PAIN ONSET AND THE
PATIENT'S MORNINGNESS-EVENINGNESS PATTERN

by

Mary Ellen Fry Davis

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Nursing

MONTANA STATE UNIVERSITY
Bozeman, Montana

December, 1988
APPROVAL

of a thesis submitted by

Mary Ellen Fry Davis

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies.

December 19, 1988
Date

Anne M. Shawan
Head, Major Department

Approved for the College of Graduate Studies

December 28, 1988
Date

Henry L. Parsons
Graduate Dean
STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made.

Permission for extensive quotation from or reproduction of this thesis may be granted by my major professor, or in his/her absence, by the Dean of Libraries when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission.

Signature Mary Ellen Fay Davis
Date December 16, 1988
VITA

Mary Ellen Fry Davis, the daughter of Elmer and Dorothy Fry, was born September 5, 1951, in Hutchinson, Kansas. She received her secondary education from East High School, Phoenix, Arizona. She graduated from Arizona State University's College of Nursing with a Bachelor of Science in Nursing in 1973.

She was employed as a staff nurse at Maryvale Samaritan Hospital in Phoenix, Arizona from 1973 to October, 1978. October, 1978, she moved to Great Falls, Montana where she began work as a staff nurse in the Coronary Care Unit of Montana Deaconess Medical Center. In January, 1986, she entered graduate school at Montana State University while continuing to work as a staff nurse in the Acute Coronary Care Unit. September, 1987, she transferred to the Department of Education at Montana Deaconess where she currently works as an educator. A Master of Nursing was completed in December, 1988.
This opportunity is taken to thank those special people who helped make my thesis a reality.

To Meredith Rowes, my chairperson, for her expertise and dedication to keeping things simple;

To Helen Lee, a committee member and instructor, for her guidance, time, and unlimited encouragement;

To Marjorie Hartog-Vander Aarde, a committee member and my mentor, for her boundless energy, insight and caring;

To Chuck Rogers, a friend, for his special assistance, creativity, and support;

To Elmer Fry, my father, Warren Davis, my husband, Susan Bohannon and Rebecca Fry, my sisters, for their concern and encouragement throughout my venture;

To my friends and coworkers for their caring and belief in me.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>STATEMENT OF PERMISSION TO USE</td>
<td>iii</td>
</tr>
<tr>
<td>VITA</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Conceptual Framework</td>
<td>3</td>
</tr>
<tr>
<td>Nursing Implications</td>
<td>5</td>
</tr>
<tr>
<td>Purpose Statement</td>
<td>6</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>7</td>
</tr>
<tr>
<td>Assumptions</td>
<td>8</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>Blood Pressure, Heart Rate, and Temperature</td>
<td>9</td>
</tr>
<tr>
<td>Ventricular Ectopy</td>
<td>13</td>
</tr>
<tr>
<td>Blood Clotting Factors</td>
<td>15</td>
</tr>
<tr>
<td>Variant Angina</td>
<td>17</td>
</tr>
<tr>
<td>Frequency of Onset of Myocardial Infarction</td>
<td>19</td>
</tr>
<tr>
<td>Frequency of Sudden Cardiac Death</td>
<td>20</td>
</tr>
<tr>
<td>Summary</td>
<td>22</td>
</tr>
</tbody>
</table>
Table of Contents - Continued

3. METHODOLOGY .. 23
 Design .. 23
 Sample .. 24
 Data Collection ... 25
 Instrument .. 28
 Protection of Human Subjects .. 30
 Analysis of Data ... 31

4. RESULTS .. 33
 Sample .. 33
 Findings .. 36
 Trends of MI Pain Onset for Morning Types 38
 Trends of MI Pain Onset for Evening Types 40
 Relationship Between MI Pain Onset and
 Morningness-Eveningness Pattern 40
 Additional Findings ... 41

5. DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS ... 45
 Discussion and Limitations .. 45
 Implications for Nursing .. 49
 Recommendations ... 51

REFERENCES CITED .. 54

APPENDICES ... 59

Appendix A - Study Consents ... 60
 University Consent ... 61
 Hospital Consent ... 62
 Explanation of the Study .. 63
 Consent to Participate .. 65
Appendix B - Study Questionnaire .. 66
Appendix C - Permission for Use of
 Questionnaire ... 74
 Author’s Consent ... 75
 Copyright Consent .. 76
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age Distribution of Participants</td>
<td>34</td>
</tr>
<tr>
<td>2. Marital Status of Participants</td>
<td>34</td>
</tr>
<tr>
<td>3. Educational Level of Participants</td>
<td>34</td>
</tr>
<tr>
<td>4. Morningness-Eveningness Classification</td>
<td>35</td>
</tr>
<tr>
<td>5. MI Pain Onset Distribution</td>
<td>37</td>
</tr>
<tr>
<td>6. MI Pain Onset Distribution for Morning Types</td>
<td>39</td>
</tr>
<tr>
<td>7. MI Pain Onset Distribution for Intermediate Types</td>
<td>42</td>
</tr>
<tr>
<td>8. MI Pain Onset for Females</td>
<td>43</td>
</tr>
<tr>
<td>9. MI Pain Onset for Males</td>
<td>44</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hourly Distribution of Myocardial Infarction</td>
<td>37</td>
</tr>
<tr>
<td>2.</td>
<td>Hourly Distribution of MI Pain Onset for Morning Types</td>
<td>39</td>
</tr>
<tr>
<td>3.</td>
<td>Time of MI Pain Onset Plotted Against the Morningness-Eveningness Scores</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>Hourly Distribution of MI Pain Onset for Intermediate Types</td>
<td>41</td>
</tr>
</tbody>
</table>
ABSTRACT

The purpose of this study was to explore the relationship between a patient's morningness-eveningness pattern and the time of myocardial infarction (MI) pain onset. An ex post facto/correlational design was used to examine the research questions. Horne and Ostberg's Morningness-Eveningness Questionnaire (1976) (MEQ) was the tool used. The study determined morningness-eveningness pattern, evaluated trends in the time of MI pain onset, and tested the relationship of morningness-eveningness patterns and time of MI pain onset. The sample included 30 patients admitted with a diagnosis of myocardial infarction to the critical care units of a hospital in the northwestern United States.

Correlations were examined between the scores on the MEQ and the time of MI pain onset using Spearman Rank Order correlation test. The results of this test indicated there was no relationship between these two variables (rs=0.059, p>0.05). A trend in the time of MI pain onset was noted to occur between the hours of 6:00 a.m. and noon (57%). Twenty-six of the participants (80%) fell into the morning type category, six (17%) into the intermediate category, and one (3%) into the evening category.

These results suggest that MIs tend to occur between 6:00 a.m. and noon without regard to morningness-eveningness pattern, although further validation will be required. An implication for nursing is to administer drugs and treatments during the hours of maximum therapeutic response and minimum adverse reactions. Also, the nurse may help the patient to alter his activity level so that myocardial oxygen requirement is at a minimum during this time in an effort to reduce mortality and morbidity.
CHAPTER I

INTRODUCTION

The leading cause of death in the United States is disease of the heart and blood vessels. An estimated 64,890,000 Americans have one or more forms of heart or blood vessel disease; 4,870,000 of these have coronary artery disease (American Heart Association [AHA], 1988). In 1988 as many as 1.5 million people were predicted to have heart attacks and about 540,000 of them will die. Each year approximately 350,000 victims of heart attacks die before they reach the hospital as the average victim waits three hours before deciding to seek help.

Patients may present themselves to the hospital emergency room with a complaint of severe chest pain that is typical for angina pectoris or acute myocardial infarction. Angina pectoris is a pain or discomfort caused by poor oxygen supply to the heart muscle. The pain is often described as heavy, crushing, squeezing, or pressing and may be centered or more diffuse throughout the anterior chest. It may radiate to one (more often the left) or both shoulders and/or arms. The pain may also radiate to the
neck, jaw, back, or epigastrium. Generally, angina pectoris pain lasts 10 to 15 minutes and is described as a steady discomfort. Any factor that increases myocardial oxygen demand or decreases the supply of oxygen to the heart may precipitate the pain. Coronary atherosclerosis is the most frequent cause of the pain. Angina is promptly relieved by rest and/or nitroglycerin (Herrin & Montgomery, 1985).

Acute myocardial infarction, also known as heart attack, occurs when the demand of the heart muscle (myocardium) for oxygen and blood supply far exceeds the supply. It usually results from severe narrowing or complete blockage of a diseased coronary artery and results in death of the myocardial cells supplied by that artery. The injury to the muscle results in electrical instability that may lead to altered electrical rhythms, including ventricular tachycardia or ventricular fibrillation. The usual symptom of a heart attack is a sudden pressure or pain in the chest that persists for two minutes or longer and is not relieved by rest and/or nitroglycerin (Herrin & Montgomery, 1985).

For those patients fortunate enough to reach coronary care units, mortality from acute myocardial infarction has substantially decreased. This has been accomplished through immediate resuscitation of the cardiac arrest victim. More importantly, cardiac arrest may be prevented by early therapy aimed specifically at prevention of life threatening
dysrhythmias, continuous electrocardiographic (EKG) monitoring and other forms of aggressive therapy (McIntyre & Lewis, 1983).

In spite of the frequency and severity of myocardial infarction (MI), little is known about the events that transform a chronic, stable condition to an acute, life threatening illness. It is believed that myocardial infarction is generally preceded by coronary thrombosis. However, recent studies have shown that coronary artery spasm may play a major part in acute infarction, possibly by disrupting the intimal surface or rupturing an atherosclerotic plaque (DeWood et al., 1980).

Unfortunately, the circumstances that trigger these pathologic events remain unknown.

Conceptual Framework

The current theory of human endogenous, biologic clocks proposes that humans have a daily, 24-hour rhythmic clock for each bodily process (Aschoff, 1985). The oscillating cycles are regulated by a system of internal physiologic clocks (Binkley, 1970; Natalini, 1977). A rhythm consists of recurring events, which are termed cycles. The length of time of a single cycle is called a period. Many biological rhythms studied have a period of about 24 hours, which are called circadian (circa, about: diem, day) rhythms. Periods much less than a day are called ultradian, like
those in the 90 minute sleep cycles. Rhythms that are
greater than a day are called infradian. Other cycles can
range from a month to a year and are considered circamonthly
or circannual rhythms. The frequency is the reciprocal of
the period; for example, the body temperature peaks once
every 24 hours, so the frequency is 1:24 (Natalini, 1977).

The site and nature of this body controlling biological
clock are still questioned. Binkley (1979) relayed that in
some vertebrate animals, the pineal gland, a small organ
embedded in the brain, may be the location of this biologic
clock. The exact role of the environment in the
establishment, maintenance, and modification of the observed
rhythms remains uncertain. It is believed, however, that
the biologic clock is capable of gradually adapting its 24-
hour rhythm in response to temporary changes in the
environment (Luce, 1971). The driving force behind a rhythm
is called Zeitgeber or synchronizer. The most common
Zeitgeber is the day/night cycle (Natalini, 1977).
Circadian rhythmicity has been studied as a potential
causative factor in several different physiological
variations. The most noticeable of all 24-hour physiologic
oscillations is the rhythmic pattern of sleep and
wakefulness. Other circadian periodicities have been noted
in many circulatory functions, including blood pressure,
heart rate, plasma volume, cardiac output, and occurrence of
death-producing dysrhythmias (Bunning, 1967).
Nursing Implications

Hours of vulnerability and resistance to drugs and illness also vary according to this 24-hour biologic clock (Luce, 1971). If one's response to drugs or infection depends upon the time of day within the body, the timing of drugs may be, in some cases, as pertinent as the dosage of the drug itself.

The statistics provided by the American Heart Association which were cited earlier reveal that death from myocardial infarction is likely to occur if the symptoms are not recognized early and promptly treated. When working with patients in whom sudden cardiac death is likely to occur, such as those with severe chest pain related to angina pectoris or postmyocardial infarction, it is essential that nursing is aware that a preventative approach needs to be taken to substantially reduce mortality.

A greater awareness of the specific hours that the onset of myocardial infarction pain is likely to occur has implications for alterations in the patient's life style. Drugs and treatments should be administered during the hours of maximum therapeutic response and minimum adverse effects. Activity levels may be adjusted so that myocardial oxygen requirement is at a minimum during this time frame as well.

Of course, these treatment alterations are important for the patient during hospitalization following the acute
event, but they are equally as important (or even more so because he will be in an unmonitored situation) at home. The patient may help promote internal stability of his body functions by adjusting medication regimen and activity levels to his individual circadian rhythm. If the patient is aware of his own circadian rhythm and the physiological changes and implications during the 24-hour period, he may be more willing to adjust his lifestyle accordingly. Nurses can facilitate self-care by making the patient aware of circadian variation and the implications of these changing physiological rhythms.

Purpose Statement

The purpose of this study was to explore the relationship between the time of myocardial infarction pain onset and the patient’s morningness or eveningness pattern. Specific questions addressed in this study included the following:

1. Are there trends in the time of day or night when myocardial infarction pain onset occurs?

2. Are there trends in times of the day or night when myocardial infarction pain starts for those persons classified as morning types?

3. Are there trends in times of the day or night when myocardial infarction pain starts for those persons classified as evening types?
4. Is there a relationship between the time of myocardial infarction pain onset and the patient's morningness or eveningness pattern?

Definition of Terms

For the purpose of this study, the following definitions were utilized.

1. **Myocardial infarction** (MI) - Cardiac enzymes and/or EKG results, as read by physicians, were positive for myocardial necrosis. Creatinine phosphokinase (CK) value was greater than 210 IU/L with a CK-MB II isoenzyme value of 1-5% of the total CK value. Creatinine phosphokinase is an enzyme in the blood that elevates when brain tissue, heart tissue, or muscle tissue are damaged. CK-MB II is the isoenzyme that specifically identifies the percentage of CK level due to heart muscle damage.

2. **Eveningness** - Evening is the time of day an individual functions best. Biological processes such as temperature peak later during the day than a morning type person. Individuals who are evening types arise and retire significantly later than morning types. The concept of eveningness was operationalized by using the Horne and Ostberg Morningness - Eveningness Questionnaire (Horne and Ostberg, 1976). Scores ranging from 16 to 41 classified individuals as evening types.
3. **Morningness** - Morning is the time of day an individual functions best. Biological processes such as temperature peak earlier during the day than an evening type person. Individuals who are morning types arise and retire significantly earlier than evening types. Morningness was operationalized using the Horne and Ostberg Morningness - Eveningness Questionnaire (Horne and Ostberg, 1976). Scores ranging from 59-86 classified individuals as morning types.

4. **Myocardial infarction pain** - The patient's report of severe chest pain that occurs as a result of a myocardial infarction.

5. **Onset** - Self report of the time the patient first noticed the chest pain which caused him to come to the hospital.

Assumptions

1. Humans have circadian rhythms of biological processes.

2. Not all biological processes have the same circadian variation.

3. Circadian rhythms of biological processes can be altered.
A review of the literature pertinent to circadian variation and heart disease was done in an effort to gain information that might present valuable insight to the potential timing of the onset of myocardial infarction pain. The review included circadian rhythm studies pertaining to blood pressure, heart rate, body temperature, ventricular ectopy, blood clotting factors, and variant angina. Circadian variation in the frequency of onset of myocardial infarction and frequency of sudden cardiac death were also included. All of the studies mentioned used available patients for their participants. The terms patients, subjects, and participants have been used as they were in each individual study.

Blood Pressure, Heart Rate, and Temperature

Intra-arterial blood pressure (BP) and electrocardiograph (EKG) recordings between untreated essential hypertension (HTN) patients (n=20) and normotensive ambulant patients (n=5) were compared by Miller-Craig, Bishop and Raferty (1978). The recording for all subjects in the study
was carried out for 48 consecutive hours on an outpatient basis. Twenty-two of the patients were able to return to their normal working day during the course of the study.

Miller-Craig et al. (1978) found that the hypertensive patients' BP was highest at 10:00 a.m. and then progressively declined throughout the day. BP was lowest at 3:00 a.m. during sleep, and then began to rise again. By 6:00 a.m., BP was increasing rapidly and this rate of increase was emphasized after the patients awoke at approximately 7:00 a.m. As recorded in the patients' diaries, changes in BP were not associated with physical activity. Heart rate (HR) in the same patients was maximal at midday and then fell progressively. During sleep, HR maintained at a low level and did not begin to increase until waking at 7:00 a.m. The HR then increased abruptly during the first two hours after waking.

The normotensive patients in Miller-Craig et al.'s (1978) study had similar results, except there was no peak in BP at 10:00 a.m. Another difference was that the BP began to increase at 5:00 a.m., which was two hours before waking. Heart rate began to rise at 6:00 a.m., reached its peak at 1:00 p.m. and then fell progressively to reach a low point at 4:00 a.m.

Kostis et al. (1982) conducted a study to define the effect of age on HR at different times during the day. Using 24-hour ambulatory electrocardiography and maximal
stress testing on 101 subjects with normal hearts, they
discovered that with increasing age, there was a decrease of
maximal HR achieved during the exercise stress test as well
as a decrease in maximal heart rate spontaneously recorded
during the day or night. While older subjects had lower
exercise tolerance, the resting or average heart rates were
not affected by age. A diurnal variation of heart rate was
seen with maximal HR occurring in the late morning and
minimal HR between 3:00 a.m. and 5:00 a.m. These subjects
were carefully screened using noninvasive and invasive means
prior to entering the study to insure they did not have
undetected heart disease. The age range for the subjects
was 16 to 68 years with an average age of 48.8 years.

Deryagina and Kraeuski (1983) studied circadian rhythm
of body temperature (BT), BP, and HR in 41 healthy subjects
(ages 21 to 45) and 10 subjects (ages 28 to 55) with
ischemic heart diseases (IHD) but not suffering from HTN.
The intention of the researchers was (1) to ascertain if
personality traits determined the development and course of
certain diseases of the cardiovascular system; (2) to
determine the effect of work activity on the circadian
rhythm of BT, BP and HR in normal subjects and patients with
cardiovascular disease; and (3) to learn if there was a
possibility of correlation between the circadian rhythm of
BT, BP, and HR and the state of adrenal hormonal activity
during the 24-hour period.
At the conclusion of their study, Deryagina and Kraeuskii (1983) found that behavioral personality features did not determine the circadian variation of BT, BP, or HR in either group of subjects. The researchers concluded there was evidence of the organizing effect of work activity (the rhythm of the working day); therefore, customary work activity was useful for healthy persons and those with IHD. They also determined that adrenal hormone activity was independent of the circadian variation of BT, BP, and HR.

Messerli et al. (1982) studied 11 patients with uncomplicated borderline HTN, 10 patients with established essential HTN, and 13 normotensive subjects to determine if there was a relationship between the urinary concentrations of epinephrine, norepinephrine, and dopamine, and the diurnal variation in BP, HR, and prevalence of ectopic beats. Urinary catecholamine levels were not related to circadian fluctuations or variability in arterial BP, HR, or prevalence of ectopic beats.

Aslanian, Adamian, Grigorian, Bagdassarian, and Assatarian (1980) studied 141 Russian patients with IHD and 25 healthy subjects in an effort to reveal chronobiological differences of the hemodynamics and blood flow of the myocardium in patients with IHD. All subjects rested from 11:30 p.m. to 7:30 a.m. and ate a meal consisting of bread, apples, matzoan, and milk every three hours while they were awake. The studies were carried out on the second and third
days after hospitalization before the patient had received any drugs. Every three hours, BP was measured and an EKG was done on each subject. Analysis of the data collected revealed circadian rhythms of HR, BP, and EKG T-wave voltage in both groups; however, the acrophase (peak) occurred at midday or in the evening hours for the healthy subjects while it occurred in the early morning hours or at night for the IHD group.

Ventricular Ectopy

Interesting findings regarding ventricular ectopy and circadian variation have been presented in the literature. Steinbach, Glogar, Weber, Joskowica, and Kaindl (1982) studied 77 patients with premature ventricular complexes (PVCs) detected during routine resting electrocardiograms. These patients were monitored for at least 24 hours under ambulatory conditions to evaluate the number and quality of PVCs. The findings showed the maximal PVC frequency to vary widely, while the minimal PVC frequency showed a clustering during early hours of sleep between midnight and 2:00 a.m.

Saito, Matsuyama, Niki, and Mori (1984) studied non-sustained ventricular tachycardia (VT) in 21 patients ranging from 28 years to 86 years in age. Each patient had at least one ambulatory EKG record containing episodes of ventricular tachycardia (three or more consecutive beats of ventricular origin). Thirteen of the 21 subjects had some
type of underlying heart disease, four had hypertension and two patients had diabetes mellitus. The ambulatory EKG was recorded for 24 hours on each patient while he carried out his normal daily routines and recorded a diary of his activities. Findings of the study showed a circadian variation in the frequency of VT in ambulatory patients. The incidence of VT was higher in the morning and in the evening and was reduced during sleep.

Canada et al. (1983) studied the hourly frequency of ventricular arrhythmias in 164 untreated ambulatory patients in order to establish if a diurnal pattern was a significant characteristic of hourly ventricular arrhythmia frequency. In order to qualify for the study, patients were required to have an average of at least 30 ventricular ectopic beats an hour on each of three 24-hour ambulatory recordings. The results showed each day's frequency curve to demonstrate a distinct diurnal pattern. The frequency of ventricular arrhythmias was significantly lower for hours from 1:00 a.m. to 5:00 a.m., while the subjects were presumably sleeping, than the frequency for the "active" hours (12:00 noon to 4:00 p.m.). Zero hourly frequencies were common in the 10:00 p.m. to 6:00 a.m. period.

In an effort to set limits of normality for PVCs, Rasmussen, Jensen, Schnohr, and Hansen (1985) also found diurnal variation of PVCs. They studied 111 healthy subjects within an age range of 20 to 70 years. The
subjects without apparent disease were randomly selected from 19,662 persons participating in the Copenhagen City Heart Study. Ambulatory 24-hour EKG recordings were done on each of the subjects. The number of PVCs was reported highest in the daytime; PVCs were higher in males than females, but the difference between the genders was not statistically significant. The findings revealed that the prevalence of PVCs increased with age, but the increase was not statistically significant.

Blood Clotting Factors

Using the same subjects as reported in Aslanian et al.'s article from 1980, Adamian, Aslanian, and Grigorian (1984) reported finding circadian rhythms of individual indicators characterizing the function state of the cardiovascular system and the blood clotting system in healthy subjects and in patients with ischemic heart disease. In healthy subjects, maximal values of arterial BP, HR, cardiac output, and stroke volume were found during the daytime and in the early evening hours. In patients with IHD, a reversal of this periodicity was found which manifests itself by shifting the acrophases of the myocardial nutrition into night time and early morning hours.

In addition to reporting the hemodynamic and EKG values, Adamian et al. (1984) relayed information concerning
the investigation of fibrinogen concentration, the prothrombin index, thrombin time, heparin time, plasma heparin tolerance, total content of plasminogen and proactivators, plasminogen activation inhibitors, and antiplasmins and fibrinase concentration in blood serum. They reported that the activity of plasminogen activation inhibitors rose in patients with IHD during the daytime and reached its maximum toward the evening. A tendency toward hypercoagulation was observed in the late morning hours as well. This was manifested in increased plasma heparin tolerances and shortened thrombin time. Therefore, the researchers concluded that hypercoagulation occurs in patients with IHD twice in the course of 24 hours — in the evening and in the late morning hours.

In an attempt to ascertain whether six blood clotting indices undergo daily variations in healthy subjects and whether such variations, if any, are similar, dissimilar, or absent in subjects with vascular pathology, Petralito et al. (1982) studied 10 healthy subjects and 10 non-diabetic patients with vascular disease. All subjects were put on a synchronized daily program for at least one week, consisting of daytime activity from 7:00 a.m. to 11:00 p.m., nightly rest from 11:00 p.m. to 7:00 a.m., with meals at 8:00 a.m., 12:00 noon, and 6:00 p.m. Blood samples were drawn every three hours to assess blood fibrinogen level, platelet aggregation, Howell’s time, partial thromboplastin time
(PTT), thrombin time (TT), and antithrombin III (AT III). The data obtained for the normal subjects demonstrated statistically significant daily variations in blood fibrinogen levels, platelet aggregation, Howell's time, PTT, and TT values. Platelet aggregation, PTT, and fibrinogen levels, all peaked at approximately 12:00 noon. Howell's time peaked at 9:00 p.m., while TT values peaked at 3:00 a.m. No significant variation over the 24-hour cycle was seen in AT III values.

However, in the patients with vascular disease, Petralito et al. (1982) demonstrated the disappearance of the daily variations of blood fibrinogen levels, platelet aggregation, and Howell's time, so at all times these indices showed an increased clotting or thrombophilic tendency. PTT and TT values continued to show daily variations but the time patterns differed from those demonstrated in healthy subjects. Both PTT and TT values peaked at 6:00 p.m. Unlike in normal patients, the AT III values in patients with vascular disease showed highly significant variations over the 24-hour period. It also peaked at 6:00 p.m.

Variant Angina

Variant angina defined as transient ischemia of the myocardium caused by spasm of major coronary arteries has received much attention in the literature. It is
characterized by transient attacks of ST-segment elevation caused by coronary artery spasm; episodes may be spontaneous or provoked and occur both with and without pain. Malignant arrhythmias such as ventricular tachycardia, ventricular fibrillation, and complete atrioventricular block are common during this type of angina.

Araki, Yasushi, Nakagaki, and Nakurmura (1983) and Araki and Nakamura (1984) presented results of their study involving the 24-hour ambulatory EKG recordings of 26 patients with variant angina. The reported results revealed that painless ST-segment elevation of 1 mm or greater was common. Seventy-two percent of the ST-segment elevations occurred from midnight to 10:00 a.m. During this period, the number of attacks of variant angina tended to increase every hour until early in the morning. The ST-segment elevations were observed most frequently (13 percent) between 5:00 and 6:00 a.m. Only five percent of ST-segment elevations occurred between 10:00 a.m. and 1:00 p.m.

Waters, Miller, Bouchard, Bosch, and Theroux (1984) studied 13 hospitalized patients with variant angina to assess circadian variations in disease activity. This study demonstrated that most patients with variant angina show circadian variation, with most attacks occurring in the early morning hours, even though the patient was unaware of them. Most of the episodes of myocardial ischemia in these subjects were asymptomatic.
Yasue et al. (1979) conducted treadmill exercise tests in the early morning and in the afternoon of the same day on 13 patients with variant angina. The attacks of ST elevations were induced repeatedly in all 13 patients in the early morning but only in two patients in the afternoon. They concluded that there is circadian variation of exercise capacity in patients with variant angina caused by coronary artery spasm induced by exercise in the early morning but not in the afternoon.

Frequency of Onset of Myocardial Infarction

Some researchers have become curious after reading the data available and questioned if there might be a circadian variation in the frequency of onset of myocardial infarction. Churina, Ganelina, and Vol’pert (1975) studied 49 patients to determine the distribution of the frequency of onset of acute myocardial infarction during the 24-hour period. They described the frequency of onset of MI in Leningrad as reaching a maximum between 8:00 and 11:00 a.m. and that there are two further peaks: at 5:00 to 6:00 p.m. and 1:00 to 2:00 a.m. Myocardial infarction was least likely to occur between 1:00 to 2:00 p.m.

Circadian variation in the frequency of onset of acute myocardial infarction pain was studied by Muller et al. (1985). The findings of their study conducted with 2,999 subjects revealed a marked circadian rhythm in frequency of
onset with a peak from 6:00 a.m. to noon. CK-MB II (the serum enzyme specific for myocardial tissue damage) and estimated timing of pain onset confirmed the existence of a circadian rhythm, with a three-fold increase in the frequency onset at a peak of 9:00 a.m. as compared to a trough at 11:00 p.m.

Frequency of Sudden Cardiac Death

To determine whether sudden cardiac death exhibits a circadian rhythm similar to the rhythm for nonfatal myocardial infarction, James Muller et al. (1987) conducted an investigation. They defined sudden cardiac death as death from cardiac disease occurring less than or equal to one hour after the onset of symptoms.

Dr. Muller et al. (1987) examined the mortality records of the Massachusetts Department of Public Health for the year 1983. They determined that 2,203 individuals died out of the hospital from a primary diagnosis of sudden cardiac death. This group decided to conduct the primary analysis on sudden cardiac death occurring out of the hospital since these deaths occur in the presence of normal endogenous and exogenous circadian rhythms. Normal circadian rhythms are disturbed in hospitalized patients. The results of the study showed a distinct circadian rhythm in the frequency of sudden cardiac death. A low frequency of death occurred
during the night while the peak occurrence was from 7:00 a.m. to 11:00 a.m.

Henderson (1982), a registered nurse, conducted a descriptive study of circadian rhythm and the hours of postmyocardial infarction mortality. She examined 214 death certificates from the Bureau of Vital Statistics in a large county of the southwestern United States. Each of the individuals had a final diagnosis of acute myocardial infarction and was hospitalized at the time of death. The one-hour, two-hour and four-hour intervals with the largest mortality rates of hospitalized patients were clustered in the hours between 4:00 p.m. and 8:00 p.m. The lowest one-hour and two-hour incidences of death during the 24-hour period occurred during the hours between 4:00 a.m. and 8:00 a.m.

Her study also examined the hours during each shift that the greatest number of deaths occurred. The hours of the day shift when the greatest number of deaths from MI occurred were 8:00 a.m. to 8:59 a.m., 11:00 a.m. to 11:59 a.m., 1:00 p.m. to 1:59 p.m. Thirty-eight of the 214 patients died during these hours. During the afternoon shift, the greatest number of deaths occurred between the hours of 6:00 p.m. to 6:59 p.m., 7:00 p.m. to 7:59 p.m. and 10:00 p.m. to 10:59 p.m. Forty-three patients died during these hours. The peak hour for death from MI during the
night shift was 12:00 midnight to 12:59 a.m. when 14 patients died.

Summary

The review of literature presented indicated there is a circadian variation in various hemodynamic factors, clotting mechanisms, and ventricular ectopy in subjects free of cardiac disease. A rhythmicity of hemodynamic factors, ventricular ectopy, and coronary spasm in subjects with cardiovascular disease was found but the clotting factors did not show a rhythmic 24-hour variance. The onset of frequency of myocardial infarction pain shows a 24-hour variation of maximum number in the morning from 6:00 a.m. to noon, and the fewest number from 11:00 p.m. to 2:00 a.m. Frequency of sudden cardiac death also showed a circadian variation with a low frequency of death occurring during the night and a peak occurrence from 7:00 a.m. to 11:00 a.m.

Most of the research reviewed was conducted by physicians. Detailed scientific methodology and analysis of data were clearly presented in the articles. Many of the projects used ambulatory EKG monitors that required the patient to keep a diary of his daily activities while wearing the monitor. None of the researchers asked for a description of the subject’s morningness or eveningness pattern while he was not wearing the monitor.
CHAPTER 3

METHODOLOGY

Design

The study was conducted using an ex post facto/correlational research design. This type of design allows for the exploration of the relationship between variables (Brink & Woods, 1983). The goal of using this style of research design is to describe the relationship among variables rather than to infer cause and effect relationships. A retrospective approach to the study was used so that the researcher could determine the subject's morningness or eveningness pattern and time of myocardial infarction pain onset.

There are several advantages of the ex post facto design. The first is that often it may be morally and ethically impractical to assign humans to experimental treatment groups (Brink & Wood, 1983). Secondly, correlational research is often an efficient and effective means of collecting a large amount of data about a problem area (Polit & Hungler, 1983). Finally, ex post facto research is done in the actual environment where a problem may occur, rather than in an artificial location such as an experimental laboratory. The results of studies in
laboratory research are often less generalizable to other settings than are the results from research done in realistic settings.

Although the ex post facto design will always have to be used for this type of study, Polit and Hungler (1983) offered some limitations of this method. First, the researcher is unable to manipulate the independent variables of interest. The second limitation is the inability to randomly assign individuals to an experimental treatment group. The last potential problem is the possibility of faulty interpretation of study results.

Patients who had myocardial infarctions were chosen to be the study group. Purposive sampling method was used because a specific group was chosen for the study (Polit & Hungler, 1983). A total of 30 patients participated.

Sample

A hospital located in the northwestern region of the United States in a city with a population of approximately 58,000 was the area from which the sample population was drawn. This agency also provided care for persons living within a 150 mile radius of the city. It had a capacity of housing 288 patients with acute care needs and 124 patients with extended care needs.

All persons admitted to the hospital with chest pain of cardiac nature were eligible to participate in the research
study. Patients with chest pain were identified in the six bed acute coronary care unit (ACCU), the 20 bed step-down coronary care unit (CCU), or the 12 bed intensive care unit (ICU). The criteria requirements for participation were as follows:

1. The patient must have had a diagnosis of myocardial infarction pain.

2. The patient was able to document the time of myocardial infarction pain onset.

3. The patient had medically stable cardiovascular, neurological, and pulmonary systems for a minimum of 24 hours. Cardiovascular stability was evidenced by hemodynamic stability in HR, BP, and cardiac rhythm. Neurological stability was evidenced by the participant remaining alert and oriented to time, place, and person. Pulmonary stability was evidenced by absence of mechanical assistance to breathe and absence of severe hypoxia.

Demographic data was collected. This data included age, marital status, gender, race, education level, occupation, and number of previous myocardial infarctions.

Data Collection

In order to identify which participants met study criteria, the researcher checked with the charge nurses of ACCU, CCU, and ICU every day during the data collection time period to determine if any new patients had been admitted.
with a diagnosis that may relate to coronary artery disease. If the answer was yes, permission to review the medical record to determine if the new patient met criteria for entry into the study was obtained.

If the newly admitted patient met the study criteria, the charge nurse of the respective critical care unit was contacted to obtain a status report regarding medical stability of the participant. When a patient had been medically stable for 24 hours, the researcher then sought permission from the charge nurse to talk with the patient regarding participation in the study.

The next step was to approach the patient. The investigator briefly explained the purpose of the research and the time involved in filling out the questionnaire. If the patient indicated initial willingness, he was asked to read the explanation of the study form and the consent to participate form (see Appendix A). Those who agreed to participate signed the consent form.

Since there was inconsistency in reporting the initial start of pain on the patient's record, the researcher interviewed the participant to establish the time of myocardial infarction pain onset. After establishing the time of pain onset, the researcher read the questionnaire instructions to the participant to insure that each participant was alerted to all of the instructions. Directions for answering the questions were also provided on
a cover sheet attached to the questionnaire so the participant had them for future reference. Upon completion of this task, the researcher left the participant so that he could complete the questionnaire in privacy.

The participant was revisited in 24 hours to determine if the questionnaire was completed. If the questionnaire was not completed, an additional 24 hours was granted to finish it. If it was not completed by the end of the second 24 hours, the questionnaire was collected and classified as an unusable tool.

If the participant decided he did not want to complete the tool, he was instructed to put the unfinished questionnaire in the envelope provided, seal it, and hand it to a staff member. The staff member placed the sealed envelope in the receptacle provided by the investigator on each of the three units.

An alternate procedure was to read the questionnaire to the participant. If the participant told the researcher he was willing to participate but would like the questionnaire read to him, the investigator read the questions and possible answers to him. The researcher was cautious not to add to, subtract from, or interpret the questions for the participants. The participants were instructed that they could refuse to answer a question or decide not to complete the questionnaire even while the researcher was reading it to them.
Instrument

Horne and Ostberg's Morningness-Eveningness Questionnaire (MEQ) (1976) was the instrument used to determine the subject's morningness or eveningness pattern (see Appendix B). Ordinal level data produced from the questionnaire placed a participant into one of five categories: (1) definitely morning type (score 70-86), (2) moderately morning type (score 59-69), (3) neither type (score 42-58), (4) moderately evening type (score 31-41), and (5) definitely evening type (score 16-30). The MEQ took about 20 minutes to complete.

The tool was externally validated using circadian variation of oral temperature measurement and sleep-wake logs compiled by the subjects (Horne and Ostberg, 1976). Spearman rank order correlations were calculated between pairs of dimensions taken from morningness-eveningness, peak oral temperature time, bed time, arising time, and sleep length. Bed time and arising time were both significantly correlated with Morningness-Eveningness (rs=-0.67, -0.79 respectively, p<0.001 [p:=p≤ in the United States]).

Mecacci and Zani (1983) also presented tool validation in their study when they evaluated the sleep-wake logs of 475 subjects and their scores from the MEQ. A t-test for matched samples was used to compare the expressed preferences of the Morningness-Eveningness Questionnaire and
the sleep-waking habits. A significant difference was found in morningness workers between the expressed preference of morningness and eveningness and the sleep log data, both in rising time (t=4.38, p<0.001) and time in bed (t=11.05, p<0.001), but not in bedtime. Significant differences were found for eveningness workers in bedtime (t=3.21, p<0.01), rising time (t=10.44, p<0.001), and time in bed (t=6.14, p<0.001).

Posey and Ford (1981) tested the reliability of the MEQ using 259 college students. They found the score distribution to be essentially normal and compatible with the five point scale suggested by Horne and Ostberg. They reported a test-retest reliability coefficient of .89.

Permission to use the tool was sought from both of the authors. Dr. Ostberg returned the consent (see Appendix C) and signed permission for both authors. The publishing company holding the copyright also authorized use of the questionnaire (see Appendix C).

A pilot study using 15 participants was done to test for readability of the instrument. Eight hospital employees and seven local restaurant employees completed the questionnaire. The results of the pilot study indicated that the participants did not always see the terms a.m. or p.m. on the questionnaire. As a result, several indicated they marked incorrect answers.
To alleviate this problem, the word "morning" was added in parentheses each time the term a.m. appeared in the questionnaire. In a similar manner, the term p.m. was followed by the word "evening" (see Appendix B). In addition, the terms representing the same time frame were color coded. Morning and a.m. were coded blue while evening and p.m. were coded orange.

Protection of Human Subjects

After a patient was identified as eligible for the study, the researcher approached the person and explained the nature of the research and time involved. The participant then read the explanation of the study and the consent form (see Appendix A). Before deciding to participate the patient was given the opportunity to look through the questionnaire and ask questions of the researcher. Once he had decided to participate in the study, he signed the consent form implying that he understood the information presented. He was given the explanation of the study form for his records.

The participant had the right not to participate in the study and was clearly informed of this verbally and in the consent form. If the patient decided not to participate, his wish was respected. No form of coercion or punishment was used in an effort to persuade him to comply. Participants experiencing fatigue or any other medical
symptoms were encouraged to discontinue answering the questionnaire.

Confidentiality was maintained by removing the signed consent form from the questionnaire. The questionnaire was left with the participant in order to provide privacy to complete the form. Each participant was instructed to complete the questionnaire within 24 hours and to place the completed questionnaire in the envelope provided and seal it. Any staff member could then take the sealed envelope and place it in the receptacle provided. The researcher collected the sealed envelopes at regular intervals.

Upon completion of data collection, the signed consent forms are kept in a sealed envelope in a locked file in the College of Nursing at Montana State University (MSU) for three years. After this time period, they will be shredded and burned per MSU protocol.

Feedback regarding the results of the research is available as group data in the thesis completed by the investigator. The bound copy of the completed work will be available for public examination at the Montana State University Library in Bozeman.

Analysis of Data

The purpose of this study was concerned with relationships of two variables. According to Brink and Wood (1983), this style of question is a level II research
question. At level II there are two steps in data analysis. The first is to put the data into tables for descriptive statistics to describe trends in the data and peaks of onset of chest pain in the morning group and the evening group. The second is to test for the significance between the onset of pain and morningness or eveningness. For this particular study, the researcher used the Spearman's rank order test because the morningness or eveningness was determined using ordinal level data measurements. Polit and Hungler (1983) indicate that nonparametric tests should be used to test for significance when using ordinal level data.
CHAPTER 4

RESULTS

Sample

Over a period of three months, a total of 34 people met the study sample requirements, and of that group, 30 agreed to participate. All 30 completed usable questionnaires. Of the 30 who participated, 28 (93%) elected to have the questionnaire read to them. The demographic data collected for this group included age, race, gender, marital status, educational level and occupation.

The sample consisted of 23 males (77%) and seven (23%) females, all of whom were Caucasian. The age range was from 39 to 80 with a mean of 60.5 years (Table 1). Twenty-five (83%) of the participants were married at the time of the study. Two (7%) of the study participants were widowed while three (10%) were divorced (Table 2). Seven (23%) had less than a high school education, nine (30%) of the participants graduated from high school, and 14 (47%) had more advanced education (Table 3).
Table 1. Age Distribution of Participants (N=30)

<table>
<thead>
<tr>
<th>Age</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 to 49</td>
<td>6</td>
<td>20%</td>
</tr>
<tr>
<td>50 to 59</td>
<td>7</td>
<td>23%</td>
</tr>
<tr>
<td>60 to 69</td>
<td>11</td>
<td>37%</td>
</tr>
<tr>
<td>70 to 80</td>
<td>6</td>
<td>20%</td>
</tr>
</tbody>
</table>

Mean = 60.5 Standard Deviation = 11.3

Table 2. Marital Status of Participants (N=30)

<table>
<thead>
<tr>
<th>Marital Status</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Married</td>
<td>25</td>
<td>83%</td>
</tr>
<tr>
<td>Widowed</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>Divorced</td>
<td>3</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 3. Educational Level of Participants (N=30)

<table>
<thead>
<tr>
<th>Educational Level</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than High School</td>
<td>7</td>
<td>23%</td>
</tr>
<tr>
<td>High School Graduate</td>
<td>9</td>
<td>30%</td>
</tr>
<tr>
<td>More than High School</td>
<td>14</td>
<td>47%</td>
</tr>
</tbody>
</table>

Mean = 13.1 years of education

Standard Deviation = 3.1 years of education
No pattern was seen when examining the occupations of the participants. Eight (27%) were retired from a variety of jobs. Examples of their careers prior to retiring included dentist, farmer, highway maintenance supervisor, and gas field superintendent. Twenty-two (73%) of the participants were still working. A few examples of their occupations included truck driver, nurse, school teacher, rancher, and legal secretary.

Fifteen (50%) of the participants scored between 70 and 86 on Horne and Ostberg's Morningness-Eveningness Questionnaire (MEQ), which classified them as definite morning types. Nine (30%) scored between 59 and 70; therefore, they were classified as moderate morning types. Five members (17%) of the sample scored between 42 and 58, which classified them as intermediate (neither) types. No one scored between 31 and 41, which was the moderate evening type category. Only one (3%) participant scored between 16 and 30. She was classified as a definite evening type.

Table 4. Morningness-Eveningness Classification (N=30)

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-86</td>
<td>15</td>
<td>50%</td>
</tr>
<tr>
<td>59-69</td>
<td>9</td>
<td>30%</td>
</tr>
<tr>
<td>42-50</td>
<td>6</td>
<td>17%</td>
</tr>
<tr>
<td>31-41</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>16-30</td>
<td>1</td>
<td>3%</td>
</tr>
</tbody>
</table>
A summary of the MEQ scores indicated that the majority (80%) of the participants classified as morning types as operationally defined for this study. The second largest group was intermediate types. Evening type was the smallest classification of participants.

Findings

In this study, four research questions were evaluated to explore the relationship between time of myocardial infarction pain onset and the patient's morningness or eveningness pattern. The first question examined trends in the time of day or night when myocardial infarction pain onset occurred for the entire study group. The data collected showed that in the first six hour time period, 12:00 midnight to 5:59 a.m., chest pain began for seven participants (23%). During the next six hour time block, 6:00 a.m. to 11:59 a.m., 17 participants (57%) reported onset of chest pain. From 12:00 noon to 5:59 p.m., three participants (10%) reported onset of pain as did three participants (10%) from 6:00 p.m. to 11:59 p.m. (Figure 1 & Table 5).
Figure 1. Hourly Distribution of Myocardial Infarction Pain Onset (N=30)

Table 5. MI Pain Onset Distribution (N=30)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 midnight to 5:59 a.m.</td>
<td>7</td>
<td>23%</td>
</tr>
<tr>
<td>6:00 a.m. to 11:59 a.m.</td>
<td>17</td>
<td>57%</td>
</tr>
<tr>
<td>12:00 noon to 5:59 p.m.</td>
<td>3</td>
<td>10%</td>
</tr>
<tr>
<td>6:00 p.m. to 11:59 p.m.</td>
<td>3</td>
<td>10%</td>
</tr>
</tbody>
</table>

Data analysis showed that the peak incidence of myocardial infarction pain in this study occurred between 6:00 a.m. and 12:00 noon. The hours from 12:00 midnight to 5:59 a.m. encountered the second peak in myocardial infarction pain. A tie for the lowest number of MIs
occurred between the 12:00 noon to 5:59 p.m. and the 6:00 p.m. to 11:59 p.m. time blocks.

Trends of MI Pain Onset for Morning Types

Research question two evaluated the time of MI pain onset for those classified as morning types to determine if there were trends in the time pain began. The 15 participants (50%) scoring 70 to 86 on the Horne and Ostberg Morningness-Eveningness Questionnaire (MEQ) were classified as definite morning types. Nine (30%) scored 59 to 69 on the MEQ and were classified as moderate morning types. As operationally defined, these two groups (80%) were combined and evaluated as one group for this study.

The range for MI pain onset for morning types was from 2:00 a.m. to 10:00 p.m. (Figure 2). Myocardial infarction pain began between 12:00 midnight and 5:59 a.m. for seven (29%) of this group. Onset of pain for 13 (54%) of the morning types occurred between 6:00 a.m. and 11:59 a.m. Between 12:00 noon and 5:59 p.m., two (8%) of the morning participants reported onset of pain as did two (8%) between 6:00 p.m. and 11:59 p.m. (Table 6).
Figure 2. Hourly Distribution of MI Pain Onset for Morning Types (N=24)

![Bar chart showing hourly distribution of MI pain onset for morning types.]

Time of MI Pain Onset (24-hour time)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 midnight to 5:59 a.m.</td>
<td>7</td>
<td>29%</td>
</tr>
<tr>
<td>6:00 a.m. to 11:59 a.m.</td>
<td>13</td>
<td>54%</td>
</tr>
<tr>
<td>12:00 noon to 5:59 p.m.</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>6:00 p.m. to 11:59 p.m.</td>
<td>2</td>
<td>8%</td>
</tr>
</tbody>
</table>

Table 6. MI Pain Onset Distribution for Morning Types (N = 24)

A large majority (80%) of the participants in this research fell into the morning category. The trend of MI pain onset for the morning group was between 6:00 a.m. and noon. Fifty-four percent of these participants indicated
their pain began during these hours. The period between 12:00 midnight and 11:59 a.m. was the second largest category of onset of MI pain. Twenty-nine percent of the morning types listed these hours as the time their pain began.

Trends of MI Pain Onset for Evening Types

The third research question asked whether there were trends in the time of day or night when myocardial infarction pain starts for those persons classified as evening types. Unfortunately only one participant (3%) obtained a score between 16 and 41 on the MEQ which would place him in this category. Therefore, no statistical computations could be done to answer this question.

Relationship Between MI Pain Onset and Morningness-Eveningness Pattern

Finally, the last research question examined the relationship between the time of myocardial infarction pain onset and the patient's morningness or eveningness pattern. The scatter diagram of the morningness-eveningness scores plotted against the time of MI pain onset showed a wide distribution of values (Figure 3). Correlations were made between these two variables using the Spearman rank order correlation test to answer this question. The results of this test indicated these two variables were not significantly correlated ($rs=0.059, p>0.05$).
Additional Findings

Five participants (17%) scored between 42 and 58 on the MEQ, which classifies them as intermediate (neither) types. The range for time of MI pain onset was from 7:00 a.m. to 2:00 p.m. (Figure 4). Myocardial infarction pain began between 6:00 a.m. and 11:59 a.m. for four intermediate participants (80%) and between 12:00 noon and 5:59 p.m. for one participant (20%) of this group (Table 7).

Figure 4. Hourly Distribution of MI Pain Onset for Intermediate Types (N=5)
Figure 3. Time of MI Pain Onset Plotted Against the Morningness-Eveningness Scores (N=30)

Table 7. MI Pain Onset Distribution for Intermediate Types (N=5)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 midnight to 5:59 a.m.</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>6:00 a.m. to 11:59 a.m.</td>
<td>4</td>
<td>80%</td>
</tr>
<tr>
<td>12:00 noon to 5:59 p.m.</td>
<td>1</td>
<td>20%</td>
</tr>
<tr>
<td>6:00 p.m. to 11:59 p.m.</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>
The peak incidence of MI pain onset for the intermediate types occurred between the hours of 6:00 a.m. and 11:59 a.m. Twenty percent of this group reported onset of MI pain starting between the hours of 12:00 noon and 5:59 p.m., which is the second peak for this group.

Twenty-three (77%) of the participants in the study were male while seven (23%) were female. These subgroups were examined to determine if there was a significant difference between the time of MI pain onset for males and females. One female (14%) and six males (26%) reported MI pain onset between 12:00 midnight and 5:59 a.m., while four women (57%) and 13 men (56%) reported pain between 6:00 a.m. and 11:59 a.m. Between 12:00 noon and 5:59 p.m., chest pain began for one female (14%) and two males (9%) as it did for one woman (14%) and two men (9%) between the hours of 6:00 p.m. and 11:59 p.m. (Tables 8 & 9).

Table 8. MI Pain Onset for Females (N=7)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 midnight to 5:59 a.m.</td>
<td>1</td>
<td>14%</td>
</tr>
<tr>
<td>6:00 a.m. to 11:59 a.m.</td>
<td>4</td>
<td>57%</td>
</tr>
<tr>
<td>12:00 noon to 5:59 p.m.</td>
<td>1</td>
<td>14%</td>
</tr>
<tr>
<td>6:00 p.m. to 11:59 p.m.</td>
<td>1</td>
<td>14%</td>
</tr>
</tbody>
</table>
Table 9. MI Pain Onset for Males (N=23)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Frequency</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 midnight to 5:59 a.m.</td>
<td>6</td>
<td>26%</td>
</tr>
<tr>
<td>6:00 a.m. to 11:59 a.m.</td>
<td>13</td>
<td>56%</td>
</tr>
<tr>
<td>12:00 noon to 5:59 p.m.</td>
<td>2</td>
<td>9%</td>
</tr>
<tr>
<td>6:00 p.m. to 11:59 p.m.</td>
<td>2</td>
<td>9%</td>
</tr>
</tbody>
</table>

No significant difference in the time of pain onset was seen between females and males (t=.27, p>.05). The peak incidence for the start of MI pain was between the hours of 6:00 a.m. and 11:59 a.m. for both of these subgroups.

These two subgroups were also examined to see if there was a difference between the number of women and men who fall into the various morningness-eveningness categories. Four females (57%) and 20 males (87%) were classified as morning types while two women (29%) and three men (13%) were classified as intermediate types. Only one female (14%) and no males scored in the evening type category. There was no significant difference between men and women in their morningness or eveningness classification (t=1.40, p>0.05).
CHAPTER 5

DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS

Discussion and Limitations

The purpose of this research was to explore the relationship between the time of myocardial infarction pain onset and the patients' morningness-eveningness pattern. Data analysis showed that there was no relationship between these two variables. Although there was no relationship in these 30 subjects, there may still be cause for continuing the research. Other authors have found correlations between some physiological parameters and morningness-eveningness pattern. Horne and Ostberg (1976) determined there was a correlation between morningness-eveningness pattern and peak oral temperature measurements. As expressed in the literature review, there was a diurnal variation in heart rate, blood pressure, body temperature and hypercoagulation (Deryagina & Kraeusk, 1983; Adamian, Aslanian, & Grigorian, 1980). One could hypothesize that these other physiological parameters also correlate with morningness-eveningness patterns. Future studies are needed to test this hypothesis.

There are several possible explanations for finding no relationship between the study variables. The first of
these is there truly is no relationship between time of myocardial infarction pain onset and morningness–eveningness pattern. Again, future studies are needed to validate this finding.

Secondly, there may have been problems with the study protocol. Because of the nature of the research, the retrospective approach was necessary. However, a possible limitation of the study was the participant’s ability to remember the exact time of pain onset. Some were able to specifically determine the time their pain started while others were less sure. This may have led to inaccurate reporting of time.

The participant’s ability to determine his "feel best" rhythm on the study questionnaire may also have been a limitation. Some could easily answer the "feel best" questions but others had to think about the concept before answering. Because of their uncertainty and possibly because of their hospitalized status, some participants may not have given the most accurate answer. In future studies, the researcher may want to consider explaining the concept of "feel best" rhythm and allowing the patient to consider the meaning for 24 hours before administering the questionnaire.

Another limitation of the study is sample size. A small sample size may not allow examination of the variation that occurred within the population. Thirty individuals may
not have been representative of the population. Researchers restudying this potential relationship should consider using a larger population.

Review of the literature revealed that physiological parameters do change in a 24 hour period. Some of these parameters were shown to have a diurnal pattern. However, none of these were studied in regards to correlation to individuals’ morningness-eveningness pattern. Future studies are needed to validate or reject this research finding with regards to the study question. The limitations which have been presented must be addressed before it can be generalized to the population that there is no relationship between morningness-eveningness pattern and the time of MI pain onset.

A serendipitous finding of the study was that the onset of MI pain clustered in the morning hours between 6:00 a.m. and noon (57%). These results concur with those of Muller et al.’s (1985) large study in which the highest peak in MI pain onset was also seen between 6:00 a.m. and noon. Perhaps the findings cited in the literature review regarding the daily variations in heart rate, blood pressure, and hypercoagulation may offer a possible explanation for the trend in MI pain onset. Miller-Craig, Bishop and Raferty (1978) found that blood pressure began to rise at approximately 5:00 a.m. and peaked about midmorning. Aslanian, Adamian, Grigorian, Bagdassarian, and Assatarian
(1980) showed that heart rate and blood pressure peaked at night and in the early morning hours for those patients with ischemic heart disease.

Adamian, Aslanian, and Grigorian (1984) reported that hypercoagulation occurred in patients with ischemic heart disease in the evening and the late morning hours. Petralito et al. (1983) revealed that patients with vascular disease showed increased clotting and thrombophilic tendencies at all times of the day. However, PTT and TT values showed daily variations and both peaked at 6:00 p.m.

Myocardial infarction most often occurs because of clot occluding the lesion of the coronary vessel. Adamian et al. (1984) observed a peak in hypercoagulation occurs in the late morning hours in patients with IHD at the same time heart rate and blood pressure are also reaching their maximal values. Perhaps this can help to explain why the time of pain onset clusters in the morning hours.

Another interesting outcome of the data analysis was that the majority of MI victims in this study fell into the morning type category. Interestingly, in Horne and Ostberg’s (1976) original study, 48 healthy subjects were evaluated and were fairly evenly distributed in morningness-eveningness scores. Eighteen subjects fit into the morning category, twenty into the evening category, and ten in the intermediate (neither type) category. A larger study sample
will be needed to validate whether patients who have myocardial infarction are likely to fit the morning type pattern.

Do morning type people tend to have MIs? Perhaps the diurnal variation in hypercoagulation tends to cause more individuals to have myocardial infarctions in the morning. Could these potential explanations be the reason no relationship was found between morningness-eveningness pattern and time of MI pain onset? Future studies are needed to answer these questions.

Implications for Nursing

Statistics provided by the American Heart Association, which were cited in chapter 1, revealed that death from myocardial infarction is likely to occur if the symptoms are not recognized early and promptly treated. Patients with severe chest pain related to angina pectoris or postmyocardial infarction are at a greater risk for sudden cardiac death related to dysrhythmias produced from myocardial ischemia. It is essential that a preventative and educational approach be taken in an effort to reduce mortality.

A primary implication for nursing is to administer drugs and treatments during the hours of maximum therapeutic response and minimum adverse effects. Often there is flexibility regarding the timing of drug and treatment
schedules. For instance, a drug may be ordered to be administered four times a day. Rather than automatically scheduling administration time for 8:00 a.m., 2:00 p.m., 8:00 p.m., and 2:00 a.m., the nurse could assess the situation and determine that the patient could benefit by altering the schedule. The medication could then be administered at 6:00 a.m., 12:00 noon, 6:00 p.m., and 12:00 midnight.

The results of this study indicated that the overall trend MI pain onset was between the hours of 6:00 a.m. and 12:00 noon. Knowledge when the onset of myocardial infarction pain is most likely to occur has implications for nursing care. By utilizing this information, the nurse may assist the patient to alter activity levels so that myocardial oxygen requirement is at a minimum during this time. The nurse and patient may accomplish this by alternating needed treatment modalities and activities of daily living with substantial rest periods. Nursing could be responsible for coordinating the scheduled activities of the various disciplines with the nursing care and then enforcing compliance of the schedule with hospital personnel. Hopefully, reducing the work load on the heart will help to limit the size of heart muscle damage, thereby, potentially decreasing morbidity and mortality.

Originally, the idea that nurses could facilitate self-care by making the patient aware of his circadian variation
pattern and the implication of these changing physiological rhythms was an expected outcome of the study. Had this been substantiated, the intent was that the patient would promote internal stability of his body functions by altering medication regimens and activity levels to his own circadian rhythm, thereby reducing the work load on the heart. However, the results of the data analysis indicated that there was not a statistically significant correlation between time of myocardial infarction pain onset and the patient’s morningness-eveningness pattern. Therefore, at this time, it is not a recommendation for nursing care.

The trend in the time of MI pain onset and its correlation with the trend in time of patients’ arrival at the health care institution may have some implications for staffing. In future studies it may be useful to determine if there are peak times that patients tend to arrive in the emergency room because of their chest pain.

Recommendations

Replicating the study using a larger sample is a recommendation. This will allow a broader examination of the relationship between morningness-eveningness pattern and the time of myocardial infarction pain onset. It would also allow the researcher to explore the possibility that patients who have myocardial infarctions are more likely to fit the morning type category. Repeating the study in a
different geographical location is also recommended. Determining whether a difference exists between an urban sample and a rural sample is an additional suggestion.

Examining the relationship between the patient’s time of MI and coagulation factors is yet another recommendation for further study. Since myocardial infarction most often occurs because of clot occluding the lesion, it would be interesting to see whether the trends of patient’s coagulation are similar to the trends in MI pain onset. Perhaps if health care professionals know when clotting factors reach their maximal values, adjustments in medications which alter coagulation can be made so that they reach their optimal effect at that time as well.

The final recommendation for further study is to examine the correlation between the time of MI pain onset and the trend in time of patients’ arrival at the health care institution. Correlation between these two variables may help to determine staffing needs.

In summary, there were two major findings of this study. The first was that there was no relationship between morningness-eveningness and time of MI pain onset. A trend for MI pain to occur between 6:00 a.m. and noon was the second major finding. It has been postulated that perhaps the trend for hypercoagulation to occur during the morning may be a possible explanation why no relationship was found between the study variables. Limitations have also been
expressed as possible reasons no relationship between morningness-eveningness and time of MI pain onset was found. It is recommended that research continue to study the relationship between these two variables. It is through research that nurses expand their knowledge. Patient care may be improved by implementing the findings.
REFERENCES CITED

APPENDICES
APPENDIX A

STUDY CONSENTS
UNIVERSITY CONSENT

RESEARCH PROPOSAL FOR HUMAN SUBJECTS REVIEW

Title of project: Relationship of Time of Myocardial Infarction Pain Onset to Individuals' Morningness - Eveningsness Pattern.

Investigator: Mary Fry Davis, R.N. CCRN

Date: January 6, 1988

Thesis Committee:

Meredith A. Page
Chairperson

Mary D. Lee
Committee Member

Mervin E. Vandersande
Committee Member

Yes No Does the project involve the administration of personality tests, inventories, or questionnaires? If YES, provide the name of the tests, if standard, or a complete copy if not standard.

Yes No For studies to be conducted at hospitals and clinics do the proposed studies involve the use, methods, techniques, or apparatus other than those used routinely at these facilities.

Human subjects would be involved in the proposed activity as either: __X___ one of the following, or including: ______ minors, ______ fetuses, ______ abortuses, ______ pregnant women, ______ prisoners, ______ mentally retarded, ______ mentally disabled.

Date January 6, 1988
Signature of Principal Investigator

APPROVAL (If disapproval, do not sign and append comments).

Signature of Education Director
Date 2/10/88

Committee Member

Date 2/14/88

Date 2/10/88
Mary Fry Davis, R.N. CCRN, a graduate student at Montana State University, may approach the patients who have been admitted to the acute coronary care unit, the coronary care unit, and the intensive care unit at Montana Deaconess Medical Center following myocardial infarction pain and ask them to participate in her research study. I understand that the purpose of this study is to determine if there is a relationship between patients' morningness or eveningness pattern and the time of myocardial infarction pain onset. She may evaluate their medical record and interview them to determine the time of myocardial infarction pain onset. Also, she may ask them to complete Horne and Ostberg's Morningness-Eveningness Questionnaire.

Mary must obtain permission from each patient's cardiologist prior to proceeding with this study.

Sincerely,

Gretchen Fitzgerald, R.N.
Vice President of Nursing
Montana Deaconess Medical Center
Great Falls, Montana

Date January 4, 1997
MONTANA STATE UNIVERSITY
EXPLANATION OF THE STUDY

Relationship of Time of Myocardial Infarction Pain Onset to Individuals' Morningness-Eveningness Pattern.

I am Mary Fry Davis, a nurse and graduate student, seeking a masters degree in nursing from Montana State University. I am interested in studying morningness-eveningness patterns of individual clients. The purpose of this study is to determine if there is a relationship between the time of myocardial infarction pain onset and individuals' morningness or eveningness pattern. You have been asked to participate in this study because you were admitted to the hospital following chest pain, and I am interested in your morningness or eveningness pattern.

Please understand that you are under no obligation to participate in this study. Your participation is completely voluntary. The care you receive as a patient in Montana Deaconess Medical Center will not be changed by agreeing or declining to complete the questionnaire or be interviewed.

The information gained from this project will not be of any benefit to you. However, it may be of benefit to future clients with heart attacks in helping to determine the best time schedule for medications and activity. Several studies have shown there is a definite morning or evening pattern variation of many of the body functions.

Your decision to participate in this study includes participation in a brief interview regarding the time your chest pain started and completion of a questionnaire. The questionnaire should take approximately 20 minutes of your time. There are no right or wrong answers to the questions. This activity should involve minimal risk or discomfort. Please feel free to look through the questionnaire before deciding to participate.

All personal information will remain confidential. Information obtained from the questionnaires will be reported as group data, which will be on file at the Montana State University Library in Bozeman, Montana. You may read the final results of the study if you desire.

You may refuse to consent or withdraw from the study at any time even if you have already signed the consent form. There will be no monetary exchange in this study. You may
keep the copy of the consent form explaining the nature of your participation. If you wish to talk to me about any aspect of the research, you may call me at 791-5507.

Thank you for your time!

Signature of Researcher/Date
CONSENT TO PARTICIPATE

Relationship of Time of Myocardial Infarction Pain Onset to Individuals' Morningness-Eveningness Pattern.

I understand that I am giving my consent to Mary Fry Davis, a registered nurse and graduate student at Montana State University, to give me the Horne and Ostberg Morningness-Eveningness Questionnaire. By signing this consent form, I am aware that I will be part of a study exploring the relationship of the time of myocardial infarction pain onset to individuals' morningness-eveningness pattern.

My participation in this study is completely voluntary. I have been assured that my consent or refusal to participate will not change my health service care while I am a patient at Montana Deaconess Medical Center. Also, I understand that I may withdraw from the study at any time even after I have signed this consent form.

I have been told that any information I provide will be held confidential and that the reports of this study will not identify me. In addition, I understand that the results reported as group data will be on file at the Montana State University Library in Bozeman, Montana, and that I may read this information if I desire.

I understand that risks to me in this study are minimal, but that completing the questionnaire may be thought provoking and cause me some anxiety and fatigue. If this should occur, I know that I may stop filling out the questionnaire and withdraw from the study.

My participation in this study may assist in determining if there is a relationship between the time of myocardial infarction pain onset and individuals' morningness-eveningness pattern. This information may be of benefit to future patients with heart attacks by helping to determine the best time schedule for medications and activity.

I have received the attached written explanation of the study, which also explains my rights as a participant. I have had the opportunity to ask Mary Fry Davis any questions I have had regarding this study.

Signature of Participant

Date
APPENDIX B

STUDY QUESTIONNAIRE
Instructions

1. Do not put your name on the questionnaire.
2. Please read each question very carefully before answering.
3. Answer ALL questions.
4. Answer questions in numerical order.
5. Each question should be answered independently of others. Do NOT go back and check your answers.
6. All questions have a selection of answers. For each question place a cross alongside ONE answer only. Some questions have a scale instead of a selection of answers. Place a cross at the appropriate point along the scale.
7. Please answer each question as honestly as possible. Both your answers and the results will be kept in strict confidence.
8. Please feel free to make any comments in the section provided below each question.
9. After completing the questionnaire, please place it in the envelope provided and then seal the envelope. Once this is done, please give the sealed envelope to any staff member working the area you are hospitalized.
1. Considering only your own "feeling best" rhythm, at what time would you get up if you were entirely free to plan your day?

AM 5 6 7 8 9 10 11 12
(Morning) (Noon)

2. Considering only your own "feeling best" rhythm, at what time would you go to bed if you were entirely free to plan your evening?

PM 8 9 10 11 12 1 2 3
(Evening) (Midnight)

3. If there is a specific time at which you have to get up in the morning, to what extent are you dependent on being awakened by an alarm clock?

- Not at all dependent
- Slightly dependent
- Fairly dependent
- Very dependent

4. Assuming adequate environmental conditions, how easy do you find getting up in the morning?

- Not at all easy
- Not very easy
- Fairly easy
- Very easy
5. How alert do you feel during the first half hour after having awakened in the morning?

- Not at all alert
- Slightly alert
- Fairly alert
- Very alert

6. How is your appetite during the first half-hour after having awakened in the morning?

- Very poor
- Fairly poor
- Fairly good
- Very good

7. During the first half-hour after having awakened in the morning, how tired do you feel?

- Very tired
- Fairly tired
- Fairly refreshed
- Very refreshed

8. When you have no commitments the next day, at what time do you go to bed compared to your usual bedtime?

- Seldom or never late
- Less than one hour later
- 1-2 hours later
- More than 2 hours later
9. You have decided to engage in some physical exercise. A friend suggests that you do this one hour twice a week and the best time for him is between 7:00 - 8:00 a.m. (morning). Bearing in mind nothing else but your own "feeling best" rhythm how do you think you would perform?

Would be on good form ____
Would be on reasonable form ... ____
Would find it difficult ____
Would find it very difficult... ____

10. At what time in the evening do you feel tired and as a result in need of sleep?

<table>
<thead>
<tr>
<th>PM 8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Evening)</td>
<td>(Midnight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. You wish to be at your peak performance for a test which you know is going to be mentally exhausting and lasting for two hours. You are entirely free to plan your day and considering only your own "feeling best" rhythm which ONE of the four testing times would you choose?

8:00-10:00 a.m. (Morning) ____
11:00-1:00 p.m. (Afternoon) ... ____
3:00-5:00 p.m. (Afternoon) ... ____
7:00-9:00 p.m. (Evening) ____

12. If you went to bed at 11:00 p.m. (Evening) at what level of tiredness would you be?

Not at all tired ____
A little tired ____
Fairly tired ____
Very tired ____
13. For some reason you have gone to bed several hours later than usual, but there is no need to get up at any particular time the next morning. Which ONE of the following events are you most likely to experience?

- Will wake up at usual time and will NOT fall asleep
- Will wake up at usual time and will doze thereafter
- Will wake up at usual time but will fall asleep again
- Will NOT wake up until later than usual

14. One night you have to remain awake between 4:00-6:00 a.m. (Morning) in order to carry out a night watch. You have no commitments the next day. Which ONE of the following alternatives will suit you best?

- Would NOT go to bed until watch was over
- Would take a good nap before and sleep after
- Would take a good sleep before and nap after
- Would take ALL sleep before watch

15. You have to do two hours of hard physical work. You are entirely free to plan your day and considering only your own "feeling best" rhythm which ONE of the following times would you choose?

- 8:00-10:00 a.m. (Morning)
- 11:00-1:00 p.m. (Afternoon)
- 3:00-5:00 p.m. (Afternoon)
- 7:00-9:00 p.m. (Evening)
16. You have decided to engage in hard physical exercise. A friend suggests that you do this for one hour twice a week and the best time for him is between 10:00-11:00 p.m. (Evening). Bearing in mind nothing else but your own "feeling best" rhythm how well do you think you would perform?

Would be on good form
Would be on reasonable form ...
Would find it difficult
Would find it very difficult ..

17. Suppose that you can choose your own work hours. Assume that you worked a FIVE hour day (including breaks) and that your job was interesting and paid by results. Which FIVE CONSECUTIVE HOURS would you select?

18. At what time of the day do you think that you reach your "feeling best" peak?

19. One hears about "morning" and "evening" types of people. Which ONE of these types do you consider yourself to be?

Definitely a "morning" type
Rather more a "morning" than an "evening" type
Rather more an "evening" than a "morning" type
Definitely an "evening" type ..
Demographic Data

1. Age in years ________.
2. Marital status -- Never married ____ Married ___
 Widowed ___ Separated ___ Divorced ___.
3. Gender -- Male ____ Female ____.
4. Race -- White ____ Black ____ Native American ____
 Mexican American ____ Other ____.
5. Education (Number of years) _______________________
6. Occupation __
7. Have you had a previous heart attack?
 Yes ____ No ____
 If yes, when? ____________________________________.
APPENDIX C

PERMISSION FOR USE OF QUESTIONNAIRE
Dear Mary Davis,

I am granting you permission to use the questionnaire I developed regarding the measurement of morningness and eveningness.* The title of the tool is A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythm.

Sincerely,

J.A. Horne

O. Östberg

*The condition is that you report the sources of all tools being used. Personally I would appreciate the reception—in due time—of a copy of your final report. Please send it to my address as from August 10, 1987:

Dr. Olov Östberg, Pt
Swedish Telecom
S-123 86 Farsta
Sweden
Ms. Mary Fry Davis, R.N., CCRN,
630 Doris Drive,
Great Falls, Montana 59405,
U.S.A.

12th April, 1988.

Dear Ms. Davis,

Re: Your request to reprint the questionnaire from:
Int. Jnl. of Chronobiology, Vol. 4, 1975
A Self-Assessment Questionnaire.... Horne/Dastberg
For use in your Thesis Study

By this letter we give permission to photocopy the above-mentioned material, in 250 copies, subject to the following conditions:

1. Receipt by us of a copyright fee of:

 $25.00 (reduced fee, as you are a student)

 by cheque payable to GORDON AND BREACH SCIENCE PUBLISHERS
 sent to our Montreux address. A payment slip is enclosed
 for your convenience: please attach it to your cheque.

2. The material referred to has appeared in our publication
 without credit or acknowledgement to another source. The
 author’s permission has been obtained by you. (Thank you
 for sending us a copy of this).

3. Acknowledgement as follows is given:

 Copyright © Gordon and Breach Science Publishers Ltd.

4. Reproduction of this material be confined to the purpose
 and work for which permission is requested and granted.
 Subsequent publication of the results will require a
 separate permission request.

May we draw your attention to the fact that this permission
is only valid if the above payment is made. To facilitate
administration, we would appreciate receiving your payment
within 30 days.

Yours sincerely,

[Signature]

J. Neville (Mrs.)
Rights and Permissions Officer.

Enc: