Development of an economic, mobile, dual oxygen and pH sensor

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, Graduate School

Abstract

Optical pH and oxygen sensors have various advantages over Clark amperometric oxygen electrodes, including portability and utility in aqueous environments unsuitable for the Clark electrode. The goal of this study was to affordably develop a dual pH and oxygen-sensing probe that could be used in a variety of settings. This study resulted in the development of the oxygen-sensing component of such a device. This component consisted of Platinum (II)-meso-tetra (2,3,4,5,6-pentafluorophenyl) porphyrin (PtTFPP) suspended in a polystyrene-based matrix. A 405 nm LED excited the PtTFPP phosphorescence and a Hamamatsu Digital Color Sensor S11012-01CR recorded the resultant emission intensities of the porphyrin. A code was written for an Arduino Uno ® microcontroller, to control the LED and color sensor, while recording the appropriate data. The oxygen-sensing component showed expected oxygen sensitivity during oxygen depletion studies.

Description

Keywords

Citation

Copyright (c) 2002-2022, LYRASIS. All rights reserved.