Piezoelectric polymer actuators for active vibration isolation in space applications

Loading...
Thumbnail Image

Date

1999

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A lightweight actuator for active vibration isolation in space applications is being developed to replace the heavy electromagnetic systems now in use. The actuator has a low effective spring constant that provides for passive vibration damping down to sub-Hertz frequencies while allowing the isolated experiment to follow the near-dc bias motion of the spacecraft. The actuator is currently optimized for the vibration level of the Space Shuttle and assembled from a pair of bimorphs in a leaf-spring configuration. Changing the size and number of sheets used in construction can vary electromechanical properties. Passive damping has been demonstrated in one and two-dimensional tests. For large (greater than a few kilograms) suspended masses, the system is underdamped and relative velocity feedback must be used to remove the resonance. Real-time control of the resonance frequency is achieved by controlling the voltage applied to the actuator with feedback from a displacement sensor. A folded pendulum seismic monitoring device was adapted for use as a one-dimensional low frequency test platform and has obtained accurate measurements of the effective spring constant and damping coefficient. Single-degree-of-freedom active feedback testing is also being conducted using this device. Two-dimensional (three-degree-of-freedom) passive damping tests were conducted on NASA's KC-135 Reduced Gravity Platform in March 1998.

Description

Keywords

Citation

G. Bohannan, V.H. Schmidt, D. Brandt, and M. Mooibroek, “Piezoelectric polymer actuators for active vibration isolation in space applications,” Ferroelectrics 224, 211-217 (1999).
Copyright (c) 2002-2022, LYRASIS. All rights reserved.