Browsing by Author "Alley, Richard B."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Grounding zone subglacial properties from calibrated active-source seismic methods(Copernicus GmbH, 2021-04) Horgan, Huw J.; van Haastrecht, Laurine; Alley, Richard B.; Anandakrishnan, Sridhar; Beem, Lucas H.; Christianson, Knut; Muto, Atsuhiro; Siegfried, Matthew R.The grounding zone of Whillans Ice Stream, West Antarctica, exhibits an abrupt transition in basal properties from the grounded ice to the ocean cavity over distances of less than 0.5–1 km. Active-source seismic methods reveal the downglacier-most grounded portion of the ice stream is underlain by a relatively stiff substrate (relatively high shear wave velocities of 1100±430 m s−1) compared to the deformable till found elsewhere beneath the ice stream. Changes in basal reflectivity in our study area cannot be explained by the stage of the tide. Several kilometres upstream of the grounding zone, layers of subglacial water are detected, as are regions that appear to be water layers but are less than the thickness resolvable by our technique. The presence of stiff subglacial sediment and thin water layers upstream of the grounding zone supports previous studies that have proposed the dewatering of sediment within the grounding zone and the trapping of subglacial water upstream of the ocean cavity. The setting enables calibration of our methodology using returns from the floating ice shelf. This allows a comparison of different techniques used to estimate the sizes of the seismic sources, a constraint essential for the accurate recovery of subglacial properties. We find a strong correlation (coefficient of determination=0.46) between our calibrated method and a commonly used multiple-bounce method, but our results also highlight the incomplete knowledge of other factors affecting the amplitude of seismic sources and reflections in the cryosphere.Item Precise interpolar phasing of abrupt climate change during the last ice age(2015-04) Buizert, Christo; Adrian, Betty; Ahn, Jinho; Albert, Mary; Alley, Richard B.; Baggenstos, Daniel; Bauska, Thomas K.; Bay, Ryan C.; Bencivengo, Brian B.; Bentley, Charles R.; Brook, Edward J.; Chellman, Nathan J.; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cravens, Eric; Cuffey, Kurt M.; Dunbar, Nelia W.; Edwards, Jon S.; Fegyveresi, John M.; Ferris, Dave G.; Fitzpatrick, Joan J.; Fudge, T. J.; Gibson, Chris J.; Gkinis, Vasileios; Goetz, Joshua J.; Gregory, Stephanie; Hargreaves, Geoffrey M.; Iverson, Nels; Johnson, Jay A.; Jones, Tyler R.; Kalk, Michael L.; Kippenhan, Matthew J.; Koffman, Bess G.; Kreutz, Karl; Kuhl, Tanner W.; Lebar, Donald A.; Lee, James E.; Marcott, Shaun A.; Markle, Bradley R.; Maselli, Olivia J.; McConnell, Joseph R.; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter D.; Nishiizumi, Kunihiko; Nunn, Richard M.; Orsi, Anais J.; Pasteris, Daniel R.; Pedro, Joel B.; Pettit, Erin C.; Price, P. Buford; Priscu, John C.; Rhodes, Rachael H.; Rosen, Julia L.; Schauer, Andrew J.; Schoenemann, Spruce W.; Sendelbach, Paul J.; Severinghaus, Jeffrey P.; Shturmakov, Alexander J.; Sigl, Michael; Slawny, Kristina R.; Souney, Joseph M.; Sowers, Todd A.; Spencer, Matthew K.; Steig, Eric J.; Taylor, Kendrick C.; Twickler, Mark S.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Welten, Kees C.; Wendricks, Anthony W.; White, James W. C.; Winstrup, Mai; Wong, Gifford J.; Woodruff, Thomas E.The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives1. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa2, 3, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw4, 5, 6. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events7, 8, 9. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision2, 3, 10. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.