Browsing by Author "Arroyo, Jesse"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Code to calculate interfacial interactions for polymer blends and composites(Montana State University, 2018-12) Arroyo, Jesse; Ryan, Cecily A.This code uses the Owens-Wendt theory to calculate surface energies of polymers and fillers from contact angle measurements and predict phase separation and nanofiller localization based on interfacial tensions. This code predicts the morphology of a 2-phase polymer blend and the localization of a nano-particulate using the geometric mean equation, and contact angles of each polymer.Item Incorporation of carbon nanofillers tunes mechanical and electrical percolation in PHBV:PLA blends(2018-12) Arroyo, Jesse; Ryan, Cecily A.Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can potentially serve as a bio-derived graphitic carbon alternative for certain composite applications. In this work, we investigate a blended biopolymer system: poly(lactic acid) (PLA)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), and addition of carbon black (CB), a commonly used functional filler as a comparison for Kraft lignin-derived BioC. We present calculations and experimental results for phase-separation and nanofiller phase affinity in this system, indicating that the CB localizes in the PHBV phase of the immiscible PHBV:PLA blends. The addition of BioC led to a deleterious reaction with the biopolymers, as indicated by blend morphology, differential scanning calorimetry showing significant melting peak reduction for the PLA phase, and a reduction in melt viscosity. For the CB nanofilled composites, electrical conductivity and dynamic mechanical analysis supported the ability to use phase separation in these blends to tune the percolation of mechanical and electrical properties, with a minimum percolation threshold found for the 80:20 blends of 1.6 wt.% CB. At 2% BioC (approximately the percolation threshold for CB), the 80:20 BioC nanocomposites had a resistance of 3.43 × 108 Ω as compared to 2.99 × 108 Ω for the CB, indicating that BioC could potentially perform comparably to CB as a conductive nanofiller if the processing challenges can be overcome for higher BioC loadings.Item Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends(2018-12) Arroyo, Jesse; Ryan, Cecily A.Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can potentially serve as a bio-derived graphitic carbon alternative for certain composite applications. In this work, we investigate a blended biopolymer system: poly(lactic acid) (PLA)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), and addition of carbon black (CB), a commonly used functional filler as a comparison for Kraft lignin-derived BioC. We present calculations and experimental results for phase-separation and nanofiller phase affinity in this system, indicating that the CB localizes in the PHBV phase of the immiscible PHBV:PLA blends. The addition of BioC led to a deleterious reaction with the biopolymers, as indicated by blend morphology, differential scanning calorimetry showing significant melting peak reduction for the PLA phase, and a reduction in melt viscosity. For the CB nanofilled composites, electrical conductivity and dynamic mechanical analysis supported the ability to use phase separation in these blends to tune the percolation of mechanical and electrical properties, with a minimum percolation threshold found for the 80:20 blends of 1.6 wt.% CB. At 2% BioC (approximately the percolation threshold for CB), the 80:20 BioC nanocomposites had a resistance of 3.43 x 108 as compared to 2.99 x 108 for the CB, indicating that BioC could potentially perform comparably to CB as a conductive nanofiller if the processing challenges can be overcome for higher BioC loadings.Item Mechanical Properties of 3D Printed Bio-Plastics(Montana State Univeristy, 2017-04) Arroyo, JesseThis project explores the feasibility and effectiveness of 3D printing biopolymers and biopolymer blends (collectively termed bioplastics) to identify processing conditions that lead to desirable properties for bioplastic filaments, such as mechanical strength, tailorable ductility, and durability. This project also investigates the feasibility of incorporating natural materials, primarily short, plant-based fibers, into bioplastic extrusions and filament forming processes to create biocomposite filaments for 3D printing applications. We will present initial mechanical test results from these bioplastics and biocomposites, including poly(hydroxybutyrate-co-hydroxyvalerate)/short hemp fiber composites. One potential application for these materials is in rapid prototyping, including various plastic-based housings and supports used in the electronics industry. Bioplastics present a more environmentally sustainable alternative to plastics traditionally used in additive manufacturing, such as ABS, having similarities in strength and manufacturability to other commonly used petroleum-based thermoplastics.