Browsing by Author "Avci, Recep"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Item Biofouling and corrosion of stainless steels in natural waters(2002) Lewandowski, Zbigniew; Avci, Recep; Geiser, Michael Joseph; Braughton, K. R.; Yurt, NurdanThe noble shift in corrosion potential to values between +300 and +400 mVSCE and the accompanying increase in cathodic current density and polarization slope at mild cathodic potentials that develop during microbial colonization of passive metals, are collectively known as ennoblement. This phenomenon is of concern as the noble shift in the corrosion potential may lead to pitting corrosion. We have demonstrated, by growing pure cultures of manganese oxidizing bacteria (MOB) Leptothrix discophora SP-6 under well defined conditions, that microbial deposition of manganese oxides causes ennoblement of 316L stainless steel (SS). Exposing 316L corrosion coupons in lakes and streams supported this conclusion; the rate and extent of ennoblement were positively correlated with the rates of deposition and the amounts of biomineralized manganese oxides deposited on the surfaces of the SS corrosion coupons. X-ray photoelectron spectroscopy (XPS) analyses of the deposits from the ennobled coupons revealed a mixture of manganese oxides, as expected. Many natural waters can support growth of MOB. When manganese-oxidizing biofilms accumulate on surfaces of passive metals there is a potential for manganese redox cycling on the metal surface. This process is initiated by depositing minute amounts of manganese oxides on the metal surface. These microbially deposited manganese oxides are then reduced by the electrons derived from anodic dissolution of the metal; the metal is corroding and the manganese oxides are reduced to divalent manganese ions. However, since the manganese ions are liberated within the manganese-oxidizing biofilm, the manganese ions are immediately reoxidized, and the cycle continues.Item Chemical effects of biofilm colonization on 304 stainless steel(1996-05) Pendyala, Jyostna; Avci, Recep; Geesey, Gill G.; Stoodley, Paul; Hamilton, Martin A.; Harkin, GaryChanges in the surface concentrations of the main alloying elements of an as‐received 304 stainless steel, exposed to a mixed culture of biofilm‐forming bacteria under flowing conditions, were observed using Auger electron spectroscopy. In the oxide film close to the bulk stainless steel, there was an enrichment in the relative concentration of Cr with a corresponding decrease in the relative Fe concentration as compared to a control coupon exposed only to sterile media. There were no changes observed in the relative Ni concentration.Item Comparative study in chemistry of microbially and electrochemically induced pitting of 316l stainless steel(2003-11) Shi, X.; Avci, Recep; Geiser, Michael Joseph; Lewandowski, ZbigniewEnnoblement of stainless steel (SS) by microbially deposited manganese oxides can lead to pitting corrosion at low chloride concentrations, causing unexpected material failures. We exposed 316L SS to manganese oxidizing bacteria Leptothrix discophoraunder well-defined laboratory conditions, and then placed the ennobled coupons in a 0.5 M sodium chloride solution until pitting developed. Using time-of-flight secondary ion mass spectroscopy we demonstrated that the pits and their immediate vicinity associated with microbial influenced corrosion had different chemical signatures than those associated with electrochemically induced pitting, suggesting a possibility that the microorganisms were directly involved in pit initiation. Based on the differences in the chemical signatures we were able to distinguish the microbially induced pits from those induced by anodic polarization.Item Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. part i: at low dissolved oxygen concentration(1993-11) Lee, Whonchee; Lewandowski, Zbigniew; Okabe, Satoshi; Characklis, William G.; Avci, Recep; Nielsen, P. H.The sulfate‐reducing bacteria (SRB)‐enhanced corrosion of mild steel in the presence of 1.5 mg·l−1 dissolved oxygen (DO) in bulk liquid was investigated. The biofilm process analysis was combined with microelectrode measurements, electrochemical measurements, and surface analysis. In the early stages of biofilm accumulation, the cathodic polarization and the decreasing corrosion rate were attributed to DO consumption by aerobic bacteria. During that time, limited SRB activity was observed. The DO concentration near the steel surface was between 0.6 and 1 mg·l−1. After total depletion of dissolved oxygen near the steel surface, the cathodic depolarization and the increased corrosion rate were associated with the proliferation of SRB near the steel surface. Auger electron spectroscopy analysis indicated localized sulfide attack. High pit density appeared where the coincidence of oxygen and sulfur occurred. The bottom of the pit was enriched with sulfur.Item Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. part ii: at high dissolved oxygen concentration(1993-11) Lee, Whonchee; Lewandowski, Zbigniew; Morrison, Michael L.; Characklis, William G.; Avci, Recep; Nielsen, P. H.Microbial biofilms containing sulfate‐reducing bacteria (SRB) and general anaerobic bacteria (GAB) were grown in a closed flow channel reactor in air‐saturated bulk liquid. The SRB proliferated within anaerobic microniches even when dissolved oxygen penetrated the entire biofilm at some locations. Corrosion of mild steel during aerobic/anaerobic biofilm accumulation was classified as aerobic corrosion and SRB‐enhanced corrosion. Aerobic corrosion dominated during the early stages of biofilm accumulation. The corrosion rate decreased as the biofilm became more uniform over the surface. SRB‐enhanced corrosion occurred after the SRB community was established within the deposits and significant amounts of iron sulfides contacted the bare steel surface. The initiation and propagation of SRB‐enhanced corrosion in an aerobic/anaerobic biofilm system was explained through the establishment of an FeS/Fe galvanic cell.Item Corrosion Resistance of Atomically Thin Graphene Coatings on Single Crystal Copper(MDPI AG, 2024-05) Mahmudul Hasan, Md; Devadig, Ramesh; Sigdel, Pawan; Lipatov, Alexey; Avci, Recep; Jasthi, Bharat K.; Gadhamshetty, VenkataramanaDesigning minimally invasive, defect-free coatings based on conformal graphene layers to shield metals from both abiotic and biotic forms of corrosion is a persistent challenge. Single-layer graphene (SLG) grown on polycrystalline copper (PC-Cu) surfaces often have inherent defects, particularly at Cu grain boundaries, which weaken their barrier properties and worsen corrosion through grain-dependent mechanisms. Here, we report that an SLG grown via chemical vapor deposition (CVD) on Cu (111) single crystal serves as a high-performance coating to lower corrosion by nearly 4–6 times (lower than bare Cu (111)) in abiotic (sulfuric acid) and microbiologically influenced corrosion (MIC) environments. For example, the charge transfer resistance for SLG/Cu (111) (3.95 kΩ cm2) was 2.5-fold higher than for bare Cu (111) (1.71 kΩ cm2). Tafel analysis corroborated a reduced corrosion current (42 ± 3 µA cm−2) for SLG/Cu (111) compared to bare Cu (111) (115 ± 7 µA cm−2). These findings are consistent with the results based on biofilm measurements. The SLG/Cu (111) reduced biofilm formation by 3-fold compared to bare Cu (111), increasing corrosion resistance, and effectively mitigating pitting corrosion. The average depths of the pits (3.4 ± 0.6 µm) for SLG/Cu (111) were notably shallower than those of bare Cu (111) (6.5 ± 1.2 µm). Surface analysis of the corrosion products corroborated these findings, with copper sulfide identified as a major component across both surfaces. The absence of grain boundaries in Cu (111) resulted in high-quality SLG manifesting higher barrier properties compared to SLG on PC-Cu. Our findings show promise for using the presented strategy for developing durable graphene coatings against diverse forms of corrosion.Item Electrochemistry of passive metals modified by manganse oxides deposited by leptothrix discophora: two-step model verified by tof-sims(2002-05) Shi, X.; Avci, Recep; Lewandowski, ZbigniewWe have applied time-of-flight secondary ion mass spectroscopy (ToF-SIMS) to study microbially induced ennoblement of 316L stainless steel and Ti-A1-4V surfaces exposed to manganese-oxidizing bacteria Leptothrix discophora SP-6. Our observations indicate that manganese biomineralization occurs in two steps: first, the divalent manganese (Mn2+) is oxidized to manganese dioxide, MnO2. Both reactions contribute to an increase in the open circuit potential and hence to the ennoblement of the material. Manganese cycling at a surface of passive metals produces renewable cathodic reactants, manganese oxyhydroxide and manganese dioxide, and endangers the material integrity.Item Ennoblement of stainless steel studied by x-ray photoelectron spectroscopy(1998) Olesen, Bo H.; Avci, Recep; Lewandowski, ZbigniewItem Influence of surface features on bacterial colonization and subsequent substratum chemical changes of 316l stainless steel(1996-01) Geesey, Gill G.; Gillis, Richard J.; Avci, Recep; Daly, Don Simone; Hamilton, Martin A.; Shope, Paul A.; Harkin, GaryBiofilm-forming bacteria were found to selectively colonize specific surface features of unpolished 316L stainless steel exposed to flowing aqueous media. Depending on the types of bacteria present, selective colonization resulted in significant depletion of Cr and Fe relative to Ni in the surface film at these features. No such depletion was observed on uncolonized surfaces exposed to sterile flowing aqueous medium. The results demonstrate that non-random, initial colonization of 316L stainless steel surfaces by these bacteria leads to changes in alloy elemental composition in the surface film that are enhanced with time. These chemical changes may be a critical step that weakens the oxide film at specific locations, allowing halides such as Cl− ions greater access to the underlying bulk alloy, and thereby facilitates localized attack and pit formation and propagation.Item Manganese dioxide as a potential cathodic reactant in corrosion of stainless steels(2000) Olesen, Bo H.; Avci, Recep; Lewandowski, ZbigniewBiofilms of leptothrix discophora SP-6, grown on 316L stainless steel (SS), ennobled the open circuit potential to 410 mVSCE. X-ray Photoelectron Spectroscopy (XPS) identified MnO2 was studied using electroplated SS. Plated MnO2 was reduced amperometrically. The process was interrupted at different reduction stages. XPS analysis of remaining oxides showed that MnO2 was reduced through MnOOH to Mn2+. We conclude that biomineralized MnO2 may increase corrosion rates by serving as a cathodic reactant.Item Microbially deposited manganese and iron oxides on passive metals - their chemistry and consequences for material performance(2002-09) Shi, X.; Avci, Recep; Lewandowski, ZbigniewThe open-circuit potential (OCP) values of Type 316L (UNS S31603) stainless steel and Ti-6Al-4V (UNS R56400) corrosion coupons, exposed to fresh river water, were ennobled to as high as 365 mV vs saturated calomel electrode (SCE) and 400 mVsce respectively. With microchemical imaging capabilities and high-detection sensitivity, a surface analysis technique based on time-of-flight secondary ion mass spectroscopy (ToF-SIMS) was developed to identify the oxidation states and distribution of biominerals on the ennobled metal surfaces. ToF-SIMS spectra of the microbial deposits compared to spectra of different manganese and iron mineral standards indicated that the biominerals on the metal surfaces are a mixture of ferric oxide (Fe2O3), manganese oxide (Mn3O4), and manganese oxyhydroxide (MnOOH) on fully ennobled coupons, and a mixture of iron oxide (Fe3O4), Fe2O3, Mn3O4, and manganese(III) oxide (Mn2O3) on partially ennobled coupons. Biomineralized manganese and iron oxides on the Type 316L stainless steel surfaces, regardless of the oxidation states, endanger the material integrity in a similar manner, as evidenced by the elevated OCP and increased cathodic current density upon mild polarization.Item Microbially deposited manganese and iron oxides on passive metals - their chemistry, distribution, and consequences for material performance(2002-09) Shi, X.; Avci, Recep; Lewandowski, Zbigniew316L stainless steel and Ti-6A1-4V corrosion coupons exposed to fresh river water ennobled the open circuit potential (OCP) to values of +365 mVsce and +400 mVsce , respectively. ToF-SIMS spectra indicated that the biominerals on the metal surfaces area a mixture of Fe2O3, Mn3O4 on partially ennobled coupons. Biomineralized manganese and iron oxides on the 316L stainless steel surfaces, regardless of the oxidation states, endanger the material integrity in a similar manner, as evidenced by the elevated OCP and increased cathodic current density upon mild polarization.Item Microbially initiated pitting on 316l stainless steel(2002-06) Geiser, Michael Joseph; Avci, Recep; Lewandowski, ZbigniewPitting corrosion of 316L stainless steel ennobled in the presence of manganese-oxidizing bacteria, Leptothrix discophora, was studied in a low-concentration sodium chloride solution. Corrosion coupons were first exposed to the microorganisms in a batch reactor until ennoblement occurred, then sodium chloride was added, which initiated pitting. The pits had aspect rations (length divided by width) and shapes closely resembling the aspect ration and the shape of the bacteria, which suggested that the microorganisms were involved in pit initiation.Item Nanoscale Structural and Mechanical Properties of Nontypeable Haemophilus influenzae Biofilms(2009-02) Arce, Fernando Teran; Carlson, Ross P.; Monds, James; Veeh, Richard Harold; Hu, Fen Z.; Stewart, Philip S.; Lal, Ratnesh; Ehrlich, Garth D.; Avci, RecepNontypeable Haemophilus influenzae (NTHI) bacteria are commensals in the human nasopharynx, as well as pathogens associated with a spectrum of acute and chronic infections. Two important factors that influence NTHI pathogenicity are their ability to adhere to human tissue and their ability to form biofilms. Extracellular polymeric substances (EPS) and bacterial appendages such as pili critically influence cell adhesion and intercellular cohesion during biofilm formation. Structural components in the outer cell membrane, such as lipopolysaccharides, also play a fundamental role in infection of the host organism. In spite of their importance, these pathogenic factors are not yet well characterized at the nanoscale. Here, atomic force microscopy (AFM) was used in aqueous environments to visualize structural details, including probable Hif-type pili, of live NTHI bacteria at the early stages of biofilm formation. Using single-molecule AFM-based spectroscopy, the molecular elasticities of lipooligosaccharides present on NTHI cell surfaces were analyzed and compared between two strains (PittEE and PittGG) with very different pathogenicity profiles. Furthermore, the stiffness of single cells of both strains was measured and subsequently their turgor pressure was estimated.Item Passive film chemistry on 316l stainless steel ennobled by biomineralized manganese(2002-04) Yurt, Nurdan; Avci, Recep; Lewandowski, Zbigniew; Sears, JoeThe effect of ennoblement on chemistry of passive films on 316L stainless steel (SS) was quantified using surface-sensitive analytical techniques. Under well-defined laboratory conditions, SS coupons were ennobled to ~ +350Vsce by biofilms of manganese-oxidizing bacterium Leptothrix discophra SP-6. Ennobled coupons were analyzed by x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TofSIMS). From the XPS depth profiles of Fe, Cr, O, Ni, C and Mn, we evaluated thickness of the passive layers before and after ennoblement, while the TofSIMS depth profiles were used to evaluate spatial distribution of Mn, Cr, Fe and Ni on the surface. Because the ennobled coupons were covered with biomineralized deposits, sputtering was used to remove these deposits under ultrahigh vacuum (UHV) conditions before probing the chemistry of the underlying passive layers. The main conclusion of the paper is that oxide layers on the ennobled coupons are significantly thinner that those on the pre-ennobled coupons, which may, hypothetically, contribute to their susceptibility to localized corrosion.Item Pit initiation on 316l stainless steel in the presence of bacteria leptothrix discophora(2001-01) Geiser, Michael Joseph; Avci, Recep; Lewandowski, ZbigniewEnnoblement of stainless steel by microbially deposited manganese oxides can cause pitting corrosion of the SS in natural waters at low chloride concentrations, leading to unexpected material failures. To study the effects of microbially deposited manganese oxides on pit initiation, we exposed 316L stainless steel to manganese oxidizing bacteria Leptothrix descophora under well-defined laboratory conditions. We then placed the ennobled coupons in a solution of low concentration sodium chloride until pitting initiated. The pits had different morphologies that those initiated by electrochemical polarization, hypothetically indicating a direct involvement of the bacteria in pit initiation.Item A practical method for determining pit depths using X-ray attenuation in EDX spectra(2015-04) Avci, Recep; Davis, Bret H.; Wolfenden, Mark L.; Kellerman, Laura R.; Lucas, Kilean; Martin, Joshua; Deliorman, MuhammedinA practical method has been developed for rapidly determining the depth of a corrosion micro-pit from the path lengths of X rays passing through the walls of the pit on their way to an X-ray detector. The method takes advantage of the attenuation of the Bremsstrahlung and characteristic X-ray radiation accompanying each X-ray spectrum, and the results are verified independently using AFM and the special pit geometry surrounding MnS inclusions in 1018 carbon steel. The method has general validity and is especially valuable in those cases where the pit depth-to-width ratio is too steep to measure using the conventional methods.Item Stability in aqueous media of 316l stainless steel films deposited on internal reflection elements(1993-02) Pedraza, A. J.; Godbole, M. J.; Bremer, Philip J.; Avci, Recep; Drake, B.; Geesey, Gill G.Thin films of 316L stainless steel were sputter-deposited on cylindrical internal reflection elements (IREs) made of germanium. These films are intended for use in Fourier transform infrared (FT-IR) spectroscopy studies on the stability of stainless steel in aqueous media. In these deposits the films tend to peel off the substrate when immersed in water, probably due to galvanic corrosion at the metal/substrate interface. Deposition of a 2-nm-thick layer of chromium oxide on the substrate prior to the deposition of the steel was beneficial on three counts. It provided an electrically insulating layer, it enhanced adhesion, and it solved the steel/germanium incompatibility problem. It was also found that annealing the substrate prior to deposition remarkably enhances the film adhesion and improves the optical properties of the substrate. The microstructure, the topography, and the chemical composition of the films were characterized by scanning and transmission electron microscopy, Auger electron spectroscopy, and atomic force microscopy. The only significant difference between the austenitic stainless steel target material and the film is that the crystalline structure of the film is body-centered cubic. The optical properties of the system germanium/metallic film/water were studied and calculated with the help of a computer program. The absorbance of the water bands in the IR range was measured in coated Ge-IRE.