Browsing by Author "Baker, Ian T."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land‐surface models: An NACP analysis(2014-07) Mathany, Ashley M.; Bohrer, Gil; Stoy, Paul C.; Baker, Ian T.; Black, Andy T.; Desai, Ankur R.; Gough, Christopher M.; Ivanov, Valeriy Y.; Jassal, Rachhpal S.; Novick, Kimberly A.; Schäfer, Karina V.R.; Verbeeck, HansLand-surface models use different formulations of stomatal conductance and plant hydraulics, and it is unclear which type of model best matches the observed surface-atmosphere water flux. We use the North American Carbon Program data set of latent heat flux (LE) measurements from 25 sites and predictions from 9 models to evaluate models' ability to resolve subdaily dynamics of transpiration. Despite overall good forecast at the seasonal scale, the models have difficulty resolving the dynamics of intradaily hysteresis. The majority of models tend to underestimate LE in the prenoon hours and overestimate in the evening. We hypothesize that this is a result of unresolved afternoon stomatal closure due to hydrodynamic stresses. Although no model or stomata parameterization was consistently best or worst in terms of ability to predict LE, errors in model-simulated LE were consistently largest and most variable when soil moisture was moderate and vapor pressure deficit was moderate to limiting. Nearly all models demonstrate a tendency to underestimate the degree of maximum hysteresis which, across all sites studied, is most pronounced during moisture-limited conditions. These diurnal error patterns are consistent with models' diminished ability to accurately simulate the natural hysteresis of transpiration. We propose that the lack of representation of plant hydrodynamics is, in part, responsible for these error patterns.Item Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site‐level synthesis(2011-12-20) Dietze, Michael C.; Vargas, Rodrigo; Richardson, Andrew D.; Stoy, Paul C.; Barr, Alan G.; Anderson, Ryan S.; M. Altaf Arain, M. Altaf; Baker, Ian T.; Blac, T. Andrew; Chen, Jing M.; Ciais, Philippe; Flanagan, Lawrence B.; Gough, Christopher M.; Grant, Robert F.; Hollinger, David Y.; Izaurralde, R. Cesar; Kucharik, Christopher J.; Lafleur, Peter; Liu, Shuguang; Lokupitiya, Erandathie; Luo, Yiqi; Munger, J. William; Peng, Changhui; Poulter, Benjamin; Price, David T.; Ricciuto, Daniel M.; Riley, William J.; Sahoo, Alok Kumar; Schaefer, Kevin; Suyker, Andrew E.; Tain, Hanqin; Tonitto, Christina; Verbeeck, Hans; Verma, Shashi B.; Weifeng, Wang; Weng, EnshengEcosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the identification of the dominant time scales contributing to model performance in the frequency domain. In this study we used wavelet analyses to synthesize the performance of 21 ecosystem models at 9 eddy covariance towers as part of the North American Carbon Program's site-level intercomparison. This study expands upon previous single-site and single-model analyses to determine what patterns of model error are consistent across a diverse range of models and sites. To assess the significance of model error at different time scales, a novel Monte Carlo approach was developed to incorporate flux observation error. Failing to account for observation error leads to a misidentification of the time scales that dominate model error. These analyses show that model error (1) is largest at the annual and 20–120 day scales, (2) has a clear peak at the diurnal scale, and (3) shows large variability among models in the 2–20 day scales. Errors at the annual scale were consistent across time, diurnal errors were predominantly during the growing season, and intermediate-scale errors were largely event driven. Breaking spectra into discrete temporal bands revealed a significant model-by-band effect but also a nonsignificant model-by-site effect, which together suggest that individual models show consistency in their error patterns. Differences among models were related to model time step, soil hydrology, and the representation of photosynthesis and phenology but not the soil carbon or nitrogen cycles. These factors had the greatest impact on diurnal errors, were less important at annual scales, and had the least impact at intermediate time scales.Item Evaluating the agreement between measurements and models of net ecosystem exchange at different times and time scales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis(2013-11) Stoy, Paul C.; Dietze, Michael C.; Richardson, Andrew D.; Vargas, Rodrigo; Barr, Alan G.; Anderson, R. S.; Arain, M. Altaf; Baker, Ian T.; Black, T. A; Chen, Jing M.; Cook, R. B.; Gough, Christopher M.; Grant, Robert F.; Hollinger, David Y.; Izaurralde, R. Cesar; Kucharik, Christopher J.; Lafleur, Peter; Law, Beverly E.; Liu, Shuguang; Lokupitiya, Erandathie; Luo, Yiqi; Munger, J. William; Peng, Changhui; Poulter, Benjamin; Price, David T.; Ricciuto, Daniel M.; Riley, William J.; Sahoo, Alok Kumar; Schaefer, Kevin; Schwalm, C. R.; Tian, Hui; Verbeeck, Hans; Weng, EnshengEarth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model–data agreement, but usually do not identify the time and frequency patterns of model–data disagreement, leaving unclear the steps required to improve model response to environmental drivers that vary on characteristic frequencies. Wavelet coherence can quantify the times and timescales at which two time series, for example time series of models and measurements, are significantly different. We applied wavelet coherence to interpret the predictions of 20 ecosystem models from the North American Carbon Program (NACP) Site-Level Interim Synthesis when confronted with eddy-covariance-measured net ecosystem exchange (NEE) from 10 ecosystems with multiple years of available data. Models were grouped into classes with similar approaches for incorporating phenology, the calculation of NEE, the inclusion of foliar nitrogen (N), and the use of model–data fusion. Models with prescribed, rather than prognostic, phenology often fit NEE observations better on annual to interannual timescales in grassland, wetland and agricultural ecosystems. Models that calculated NEE as net primary productivity (NPP) minus heterotrophic respiration (HR) rather than gross ecosystem productivity (GPP) minus ecosystem respiration (ER) fit better on annual timescales in grassland and wetland ecosystems, but models that calculated NEE as GPP minus ER were superior on monthly to seasonal timescales in two coniferous forests. Models that incorporated foliar nitrogen (N) data were successful at capturing NEE variability on interannual (multiple year) timescales at Howland Forest, Maine. The model that employed a model–data fusion approach often, but not always, resulted in improved fit to data, suggesting that improving model parameterization is important but not the only step for improving model performance. Combined with previous findings, our results suggest that the mechanisms driving daily and annual NEE variability tend to be correctly simulated, but the magnitude of these fluxes is often erroneous, suggesting that model parameterization must be improved. Few NACP models correctly predicted fluxes on seasonal and interannual timescales where spectral energy in NEE observations tends to be low, but where phenological events, multi-year oscillations in climatological drivers, and ecosystem succession are known to be important for determining ecosystem function. Mechanistic improvements to models must be made to replicate observed NEE variability on seasonal and interannual timescales.Item Quantifying damage in polycrystalline ice via X-Ray computed micro-tomography(2017-04) Hammonds, Kevin; Baker, Ian T.The use of X-ray computed micro-tomography (micro-CT) is presented here as a useful tool for the analysis and quantification of damage in polycrystalline ice. Although known to be useful for characterizing damage in many other materials, the use of micro-CT has not yet been adapted to the non-trivial case of also characterizing damage in polycrystalline ice. Samples of polycrystalline ice were tested in uniaxial compression at six different strain rates, spanning four orders of magnitude, from 1 × 10−6 s−1 to 1 × 10−3 s−1, and two different testing temperatures of −10 °C and −20 °C. The extent of cracking from each test is characterized via micro-CT imaging and is quantified via a newly proposed variant of the crack density tensor, which accounts for any anisotropy in the mean crack orientation and is shown to be equivalent to the materials anisotropy tensor. To account for anisotropy in the distribution of cracks, an eigenanalysis is also performed. The results show that micro-CT can be a useful tool for both visualizing and quantifying damage in polycrystalline ice and that a 3-D analog of the traditional second-rank crack density tensor can be readily calculated via commercially available software.