Browsing by Author "Birkeland, Karl W."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Climate drivers of large magnitude snow avalanche years in the U.S. northern Rocky Mountains(Springer Science and Business Media LLC, 2021-05) Peitzsch, Erich H.; Pederson, Gregory T.; Birkeland, Karl W.; Hendrikx, Jordy; Fagre, Daniel B.Large magnitude snow avalanches pose a hazard to humans and infrastructure worldwide. Analyzing the spatiotemporal behavior of avalanches and the contributory climate factors is important for understanding historical variability in climate-avalanche relationships as well as improving avalanche forecasting. We used established dendrochronological methods to develop a long-term (1867–2019) regional avalanche chronology for the Rocky Mountains of northwest Montana using tree-rings from 647 trees exhibiting 2134 avalanche-related growth disturbances. We then used principal component analysis and a generalized linear autoregressive moving average model to examine avalanche-climate relationships. Historically, large magnitude regional avalanche years were characterized by stormy winters with positive snowpack anomalies, with avalanche years over recent decades increasingly influenced by warmer temperatures and a shallow snowpack. The amount of snowpack across the region, represented by the first principal component, is shown to be directly related to avalanche probability. Coincident with warming and regional snowpack reductions, a decline of ~ 14% (~ 2% per decade) in overall large magnitude avalanche probability is apparent through the period 1950–2017. As continued climate warming drives further regional snowpack reductions in the study region our results suggest a decreased probability of regional large magnitude avalanche frequency associated with winters characterized by large snowpacks and a potential increase in large magnitude events driven by warming temperatures and spring precipitation.Item Combining GPS tracking and survey data to better understand travel behavior of out-of-bounds skiers(2020-09) Sykes, John M.; Hendrikx, Jordy; Johnson, Jerry; Birkeland, Karl W.Our research seeks to expand existing knowledge of travel behavior and decision-making in avalanche terrain. We have done this by using GPS tracking to observe the travel behavior of out-of-bounds (OB) skiers and collecting survey data to investigate their terrain choices. We sampled participants in the field by distributing hand-held GPS units and surveys along the southern boundary of Bridger Bowl Ski Area, Southwest Montana, USA. In total, we used data from 136 participants that volunteered over the course of 19 field days, from February 2017 to February 2018. We analyzed the resulting GPS data using a GIS, and we derived terrain metrics from elevation and land cover data. We fit a multiple linear regression model using GPS track downhill starting distance from the ski area boundary as the response variable and survey responses, interaction with complex avalanche terrain (as defined using the Avalanche Terrain Exposure Scale), weather conditions, and avalanche hazard level as explanatory variables. This approach evaluates travel behavior as a function of human factors, terrain, weather, and snowpack, providing a holistic perspective on decision-making drivers. Our results show that gender (female), formal avalanche education, and perception of avalanche mitigation are statistically significant (p < 0.05) survey responses which indicate that participants travel further from the ski area boundary before descending Saddle Peak, which effects individuals avalanche terrain exposure. Downhill starting distance is also significantly correlated with time and distance in complex avalanche terrain (p < 0.05). Our results provide a case study of the terrain preferences and avalanche awareness of OB skiers and highlight specific “human factors” that are correlated with terrain selection. Two practical applications of this research are: 1) tailoring of targeted avalanche education outreach based on our results specific to the OB setting, and 2) designing new signage to illustrate the avalanche terrain near the ski area boundary for skiers who are inexperienced in the backcountry or unfamiliar with the specific area.Item Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States(Copernicus GmbH, 2021-02) Schauer, Andrea R.; Hendrikx, Jordy; Birkeland, Karl W.; Mock, Carly J.Deep persistent slab avalanches are capable of destroying infrastructure and are usually unsurvivable for those who are caught. Formation of a snowpack conducive to deep persistent slab avalanches is typically driven by meteorological conditions occurring in the beginning weeks to months of the winter season, and yet the avalanche event may not occur for several weeks to months later. While predicting the exact timing of the release of deep persistent slab avalanches is difficult, onset of avalanche activity is commonly preceded by rapid warming, heavy precipitation, or high winds. This work investigates the synoptic drivers of deep persistent slab avalanches at three sites in the western USA with long records: Bridger Bowl, Montana; Jackson, Wyoming; and Mammoth Mountain, California. We use self-organizing maps to generate 20 synoptic types that summarize 5899 daily 500 mbar geopotential height maps for the winters (November–March) of 1979/80–2017/18. For each of the three locations, we identify major and minor deep persistent slab avalanche seasons and analyze the number of days represented by each synoptic type during the beginning (November–January) of the major and minor seasons. We also examine the number of days assigned to each synoptic type during the 72 h preceding deep persistent slab avalanche activity for both dry and wet slab events. Each of the three sites exhibits a unique distribution of the number of days assigned to each synoptic type during November–January of major and minor seasons and for the 72 h period preceding deep persistent slab avalanche activity. This work identifies the synoptic-scale atmospheric circulation patterns contributing to deep persistent slab instabilities and the patterns that commonly precede deep persistent slab avalanche activity. By identifying these patterns, we provide an improved understanding of deep persistent slab avalanches and an additional tool to anticipate the timing of these difficult-to-predict events.Item Using time lapse photography to document terrain preferences of backcountry skiers(2020-04) Saly, Diana; Hendrikx, Jordy; Birkeland, Karl W.; Challender, Stuart; Johnson, JerryTravel in avalanche terrain requires considered and careful selection of appropriate terrain to reduce exposure to avalanche danger. In many parts of the world, recreational backcountry skiers in avalanche terrain are aided by a regional avalanche forecast. The overall aim of an avalanche forecast is for users to adjust their terrain choices in response to the avalanche danger rating and avalanche problem, thereby reducing their risk of an avalanche involvement. In this paper we present a novel passive observation technique to assess how lift assisted backcountry skiers adjust their terrain use in response to the avalanche danger rating. This paper develops and demonstrates a method to record the terrain metrics of all skiers on an avalanche-prone backcountry slope. Using a remote time-lapse camera focused on a high skier-use backcountry slope, we anonymously recorded the descent route of skiers in ten-second increments. Using 31,966 images over 13 days and 7499 skier point locations, skier locations were digitized from the images, then transformed onto a geo-referenced digital elevation model (DEM) such that terrain metrics could be extracted for each anonymous skier location. When these location points are compared to simultaneous GPS measurements, the horizontal accuracy was estimated to be within a 49-m horizontal accuracy, with a 95% confidence interval. Analysis of the terrain metrics for each skier point compared slope, profile curvature (downslope), and plan curvature (cross slope) over days with different forecasted avalanche danger ratings. This statistical analysis was qualitatively supported by a review of the spatial patterns of the terrain choices on these days. Furthermore, we used this technique to estimate group size, and found a surprising number of solo skiers, even on Considerable avalanche danger days. By remotely photographing all skiers on a slope, the data collected provides a large and diverse data set of the terrain preferences of backcountry skiers under varying avalanche conditions, with limited bias. These results have implications for avalanche education by enhancing our understanding of specific terrain management skills by backcountry skiers.