Browsing by Author "Cox, Tanner L."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Diet composition and resource overlap of sympatric native and introduced salmonids across neighboring streams during a peak discharge event(Public Library of Science, 2023-01) Cox, Tanner L.; Lance, Michael J.; Albertson, Lindsey K.; Briggs, Michelle A.; Dutton, Adeline J.; Zale, Alexander V.Species assemblages composed of non-native and native fishes are found in freshwater systems throughout the world, and interactions such as interspecific competition that may negatively affect native species are expected when non-native species are present. In the Smith River watershed, Montana, rainbow trout were introduced by 1930. Native mountain whitefish and non-native rainbow trout have presumably occurred in sympatry since the introduction of rainbow trout; however, knowledge about how these two species compete with one another for food resources is sparse. We quantified diet compositions of rainbow trout and mountain whitefish in the mainstem Smith River and in a tributary to the Smith River—Sheep Creek—to determine the degree of overlap in the diets of mountain whitefish and rainbow trout in the Smith River and between the mainstem Smith River and a tributary stream. Rainbow trout and mountain whitefish had generalist feeding strategies, which probably contribute to the amicable coexistence of these species. Diet overlap between rainbow trout and mountain whitefish was high (Pianka’s index value = 0.85) in the Smith River and moderate in Sheep Creek (Pianka’s index value = 0.57). Despite overlap in diets, some resource partitioning may alleviate resource competition (e.g., rainbow trout consumed far more Oligochaeta than mountain whitefish but fewer Brachycentridae and Chironomidae). Diet composition of rainbow trout and mountain whitefish did not differ greatly between the Smith River and Sheep Creek. Prey categories most commonly used by mountain whitefish at the population and individual levels (i.e., Ephemeroptera and Trichoptera) are sensitive taxa and many species within these orders have experienced extinctions and population declines. Therefore, future changes in resource availability or competition could be of concern.Item Spawning Locations of Pallid Sturgeon in the Missouri River Corroborate the Mechanism for Recruitment Failure(MDPI, 2023-05) Cox, Tanner L.; Guy, Christopher S.; Holmquist, Luke M.; Webb, Molly A. H.Conservation propagation of pallid sturgeon (Scaphirhynchus albus) upstream of Fort Peck Reservoir, MT, USA, has successfully recruited a new generation of spawning-capable pallid sturgeon where there would otherwise be fewer than 30 remaining wild reproductively mature pallid sturgeon. Successful recovery of pallid sturgeon will now rely on the behavior of pallid sturgeon (e.g., successful spawning in locations that provide adequate drift distance for larvae to recruit). We used location data of pallid sturgeon during four putative spawning seasons to answer the following questions: Where do pallid sturgeon spawn? Are spawning locations related to discharge? Are substrate characteristics at the spawning locations similar to other river reaches? Do spawning-capable females, spawning-capable males, and female pallid sturgeon undergoing mass ovarian follicular atresia use the river similarly? Additionally, we considered if spawning locations are far enough from the river–reservoir transition zone to provide adequate drift distance for larvae to recruit. Spawning-capable pallid sturgeon did explore upstream locations, and four spawning-capable pallid sturgeon were located in the Marias River during the spawning season in 2018 when discharge was at an unprecedented high. Pallid sturgeon exited the Marias River and moved downstream prior to spawning, and when spawning occurred, it was not far enough upstream to prevent larvae from entering the transition zone of Fort Peck Reservoir. Thus, management of discharge and water temperature to mimic 2018 conditions may increase use of the Marias River by pallid sturgeon during the spawning season, which would increase drift distance available to larvae and increase the probability of successful recruitment.