Browsing by Author "Dewey, Sarah R."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Respiratory pathogens and their association with population performance in Montana and Wyoming bighorn sheep populations(2018-11) Butler, Carson J.; Edwards, William H.; Paterson, J. Terrill; Proffitt, Kelly M.; Jennings-Gaines, Jessica E.; Killion, Halcyon J.; Wood, Mary E.; Ramsey, Jennifer M.; Almberg, Emily S.; Dewey, Sarah R.; McWhirter, Douglas E.; Courtemanch, Alyson B.; White, Patrick J.; Rotella, Jay J.; Garrott, Robert A.At the request of National Park Service resource managers, we began a study in 2000 to evaluate causes for the decline of the bighorn sheep (Ovis canadensis) population inhabiting Bighorn Canyon National Recreation Area (BICA), the Pryor Mountain Wild Horse Range, and surrounding state and U.S. Forest Service lands in Montana and Wyoming. Our study consisted of radio-collaring adult rams and ewes with mortality sensors to monitor adult mortalities, tracking ewes to determine pregnancy and lambing rates, habitat assessments to determine why the population was not expanding into what had been modeled using GIS methodology as suitable bighorn sheep habitat, measuring ungulate herbaceous consumption rates and herbaceous production to determine plant responses, and aerial and boat surveys to determine bighorn sheep population range and population dynamics (Schoenecker and others, this report). Two habitat suitability models were created and conducted (Gudorf, this report; Wockner and others, this report) using different methodologies, and comparisons made between the two. Herd population dynamics were modeled using the POP-II and POP-III programs (Roelle, this report), and a reassessment of ungulate exclosures that were established 8–10 years ago was conducted (Gerhardt, this report). The bighorn sheep population of the greater Bighorn Canyon National Recreation Area (BICA) was extirpated in the 1800s, and then reintroduced in 1973. The herd increased to a peak population of about 211 animals (Kissell and others, 1996), but then declined sharply in 1995 and 1996. Causes for the decline were unknown. Numbers have remained around 100 ± 20 animals since 1998. Previous modeling efforts determined what areas were suitable bighorn sheep habitat (Gudorf and others, 1996). We tried to determine why sheep were not using areas that were modeled as suitable or acceptable habitat, and to evaluate population dynamics of the herd.Item Seasonal resource selection by introduced mountain goats in the southwest Greater Yellowstone Area(2017-04) Lowrey, Blake; Garrott, Robert A.; Miyasaki, Hollie M.; Fralick, Gary L.; Dewey, Sarah R.Mountain goats (Oreamnos americanus) are among the least studied North American ungulates. Aided by successful translocations from the early to mid-1900s, introduced populations have greatly expanded within non-native ranges, yet there remains a paucity of empirical studies concerning their habitat requirements and potential distributions. The lack of studies presents a formidable challenge to managers tasked with monitoring mountain goat expansion and mitigating for any potential negative impacts posed to native species and communities. We constructed summer and winter resource selection models using GPS data collected during 2011-2014 from 18 (14 female and four male) mountain goats in the Snake River Range of the southwest Greater Yellowstone Area. We used generalized linear mixed models and evaluated landscape and environmental covariates at multiple spatial grains (i.e., neighborhood analyses within 30-, 100-, 500-, and 1000-m buffers) within four related suites. The multi-grain resource selection function greatly improved model fit, indicating that mountain goat resource selection was grain dependent in both seasons. In summer, mountain goats largely selected rugged and steep areas at high elevations and avoided high solar radiation, canopy cover, and time-integrated normalized difference vegetation index (NDVI). In winter, mountain goats selected lower elevations characterized by steep and rugged slopes on warm aspects and avoided areas with high canopy cover, NDVI amplitude, and snow water equivalent. Slope was the dominant predictor of habitat use in both seasons, although mountain goats selected for steeper slopes in winter than in summer. Regional extrapolations depicted suitable mountain goat habitat in the Snake River, Teton, Gros Ventre, Wyoming, and Salt Ranges centered around steep and rugged areas. Winter range was generally characterized by the steepest slopes within a more broadly distributed and generally less steep summer range. Further research should examine the spatial and temporal overlap with native populations to further our understanding of resource selection dynamics and the potential for introduced mountain goats to alter intraguild behavioral processes of sympatric species, namely the Rocky Mountain bighorn sheep (Ovis canadensis canadensis).Item A Survey of Bacterial Respiratory Pathogens in Native and Introduced Mountain Goats ( Oreamnos americanus)(2018-06) Lowrey, Blake; Butler, Carson J.; Edwards, William H.; Wood, Mary E.; Dewey, Sarah R.; Fralick, Gary L.; Jennings-Gaines, Jessica E.; Killion, Halcyon J.; McWhirter, Douglas E.; Miyasaki, Hollie M.; Stewart, Shawn T.; White, Kevin S.; White, Patrick J.; Garrott, Robert A.In contrast to broad range expansion through translocations, many mountain goat ( Oreamnos americanus) populations have shown signs of decline. Recent documentation of pneumonia in mountain goats highlights their susceptibility to bacterial pathogens typically associated with bighorn sheep ( Ovis canadensis) epizootics. Respiratory pathogen communities of mountain goats are poorly characterized yet have important implications for management and conservation of both species. We characterized resident pathogen communities across a range of mountain goat populations as an initial step to inform management efforts. Between 2010 and 2017, we sampled 98 individuals within three regions of the Greater Yellowstone Area (GYA), with a smaller sampling effort in southeast Alaska, USA. Within the GYA, we detected Mycoplasma ovipneumoniae in two regions and we found at least two Pasteurellaceae species in animals from all regions. Mannheimia haemolytica was the only pathogen that we detected in southeast Alaska. Given the difficult sampling conditions, limited sample size, and imperfect detection, our failure to detect specific pathogens should be interpreted with caution. Nonetheless, respiratory pathogens within the GYA may be an important, yet underappreciated, cause of mountain goat mortality. Moreover, because of the strong niche overlap of bighorn sheep and mountain goats, interspecific transmission is an important concern for managers restoring or introducing mountain ungulates within sympatric ranges.