Browsing by Author "Ding, M. D."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare(2017-02) Li, Ying; Sun, X.; Ding, M. D.; Qiu, Jiong; Priest, E. R.Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.Item Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare(2017-10) Li, Ying; Kelly, Madie; Ding, M. D.; Qiu, Jiong; Zhu, X. S.; Gan, W. Q.We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph (IRIS). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS. slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si IV 1402.77 angstrom line exhibits significantly broadened line wings extending to 200 km s(-1) with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe XXI 1354.08 angstrom line shows blueshifts and the cool Si IV 1402.77 angstrom, C II 1335.71 angstrom, and Mg II 2803.52 angstrom lines show evident redshifts up to a velocity of 80 km s(-1), which are consistent with the scenario of chromospheric evaporation/condensation.