Browsing by Author "Dlakic, Mensur"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item The Aggregatibacter actinomycetemcomitans cytolethal distending toxin active subunit, CdtB, contains a cholesterol recognition sequence required for toxin binding and subunit internalization(2015-07) Boesze-Battaglia, Kathleen; Walker, Lisa P.; Zekavat, Ali; Dlakic, Mensur; Scuron, Monika Damek; Nygrend, Patrik; Shenker, Bruce J.Induction of cell cycle arrest in lymphocytes following exposure to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is dependent upon the integrity of lipid membrane microdomains. Moreover, we have previously demonstrated that the associaton of Cdt with target cells involves the CdtC subunit which binds to cholesterol via a cholesterol recognition amino acid consensus sequence (CRAC site). In this study we demonstrate that the active Cdt subunit, CdtB, also is capable of binding to large unilamellar vesicles (LUVs) containing cholesterol. Furthermore, CdtB binding to cholesterol involves a similar CRAC site as that demonstrated for CdtC. Mutation of the CRAC site reduces binding to model membranes as well as toxin binding and CdtB internalization in both Jurkat cells and human macrophages. A concomitant reduction in Cdt-induced toxicity was also noted indicated by reduced cell cycle arrest and apoptosis in Jurkat cells and a reduction in the pro-inflammatory response in macrophages (IL-1β and TNFα release). Collectively, these observations indicate that membrane cholesterol serves as an essential ligand for both CdtC and CdtB and further, that this binding is necessary for both internalization of CdtB and subsequent molecular events leading to intoxication of cells.Item Blockade of the PI-3K Signalling Pathway by the Aggregatibacter Actinomycetemcomitans Cytolethal Distending Toxin Induces Macrophages to Synthesize and Secrete Pro-Inflammatory Cytokines(2014-09) Shenker, Bruce J.; Walker, Lisa P.; Zekavat, Ali; Dlakic, Mensur; Boesze-Battaglia, KathleenThe Aggregatibactor actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes; these toxic effects are due to the active subunit, CdtB, which functions as a phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase. We now extend our investigation and demonstrate that Cdt is able to perturb human macrophage function. THP-1- and monocyte-derived macrophages were found not to be susceptible to Cdt-induced apoptosis. Nonetheless, the toxin was capable of binding to macrophages and perturbing PI-3K signalling resulting in decreased PIP3 levels and reduced phosphorylation of Akt and GSK3β; these changes were accompanied by concomitant alterations in kinase activity. Exposure of monocytes and macrophages to Cdt resulted in pro-inflammatory cytokine production including increased expression and release of IL-1β, TNFα and IL-6. Furthermore, treatment of cells with either TLR-2, -3 or -4 agonists in the presence of Cdt resulted in an augmented pro-inflammatory response relative to agonist alone. GSK3β inhibitors blocked the Cdt-induced pro-inflammatory cytokine response suggesting a pivotal role for PI-3K blockade, concomitant decrease in GSK3β phosphorylation and increased kinase activity. Collectively, these studies provide new insight into the virulence potential of Cdt in mediating the pathogenesis of disease caused by Cdt-producing organisms.Item The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin(2016-12) Scuron, Monika D.; Boesze-Battaglia, Kathleen; Dlakic, Mensur; Shenker, Bruce J."This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB(2) Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination. "Item Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed ß-helix(2005-06) Douthit, Stephanie Ann; Dlakic, Mensur; Ohman, Dennis E.; Franklin, Michael J.The polysaccharide alginate forms a protective capsule for Pseudomonas aeruginosa during chronic pulmonary infections. The structure of alginate, a linear polymer of ß1-4-linked O-acetylated D-mannuronate (M) and L-guluronate (G), is important for its activity as a virulence factor. Alginate structure is mediated by AlgG, a periplasmic C-5 mannuronan epimerase. AlgG also plays a role in protecting alginate from degradation by the periplasmic alginate lyase AlgL. Here, we show that the C-terminal region of AlgG contains a right-handed ß-helix (RHßH) fold, characteristic of proteins with the carbohydrate-binding and sugar hydrolase (CASH) domain. When modeled based on pectate lyase C of Erwinia chrysanthemi, the RHßH of AlgG has a long shallow groove that may accommodate alginate, similar to protein/polysaccharide interactions of other CASH domain proteins. The shallow groove contains a 324-DPHD motif that is conserved among AlgG and the extracellular mannuronan epimerases of Azotobacter vinelandii. Point mutations in this motif disrupt mannuronan epimerase activity but have no effect on alginate secretion. The D324A mutation has a dominant negative phenotype, suggesting that the shallow groove in AlgG contains the catalytic face for epimerization. Other conserved motifs of the epimerases, 361-NNRSYEN and 381-NLVAYN, are predicted to lie on the opposite side of the RHßH from the catalytic center. Point mutations N362A, N367A, and V383A result in proteins that do not protect alginate from AlgL, suggesting that these mutant proteins are not properly folded or not inserted into the alginate biosynthetic scaffold. These motifs are likely involved in asparagine and hydrophobic stacking, required for structural integrity of RHßH proteins, rather than for mannuronan catalysis. The results suggest that the AlgG RHßH protects alginate from degradation by AlgL by channeling the alginate polymer through the proposed alginate biosynthetic scaffold while epimerizing approximately every second D-mannuronate residue to L-guluronate along the epimerase catalytic face.Item Fluorescent Probes for Detecting Protein Interactions in Bacteria(2013-03) Lacy, Erika; Dlakic, MensurProtein interactions are essential for many biological functions to occur. Bimolecular Fluorescence Complementation (BiFC) assay is a complementation-based technique used to study protein interactions. One benefit of this approach is that protein interactions as well as the location of that interaction can be studied under normal cellular conditions. BiFC works by the formation of a fluorescent complex when two proteins of interest attached to nonfluorescent fragments of a fluorescent protein interact. In this project we created BiFC constructs to study protein interactions in Bacteria involved in ribosome function. These molecular tools based on the BiFC method can be used as controls in studies of similar interactions in eukaryotic cells.Item HHsvm: Fast and accurate classification of profile-profile matches identified by HHsearch(2009-12) Dlakic, MensurMotivation: Recently developed profile–profile methods rival structural comparisons in their ability to detect homology between distantly related proteins. Despite this tremendous progress, many genuine relationships between protein families cannot be recognized as comparisons of their profiles result in scores that are statistically insignificant. Results: Using known evolutionary relationships among protein superfamilies in SCOP database, support vector machines were trained on four sets of discriminatory features derived from the output of HHsearch. Upon validation, it was shown that the automatic classification of all profile–profile matches was superior to fixed threshold-based annotation in terms of sensitivity and specificity. The effectiveness of this approach was demonstrated by annotating several domains of unknown function from the Pfam database.Item Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats(2018-05) Jay, Zackary J.; Beam, Jacob P.; Dlakic, Mensur; Rusch, Douglas B.; Kozubal, Mark A.; Inskeep, William P.The discovery of archaeal lineages is critical to our understanding of the universal tree of life and evolutionary history of the Earth. Geochemically diverse thermal environments in Yellowstone National Park provide unprecedented opportunities for studying archaea in habitats that may represent analogues of early Earth. Here, we report the discovery and characterization of a phylum-level archaeal lineage proposed and herein referred to as the \'Marsarchaeota\', after the red planet. The Marsarchaeota contains at least two major subgroups prevalent in acidic, microaerobic geothermal Fe(III) oxide microbial mats across a temperature range from similar to 50-80 degrees C. Metagenomics, single-cell sequencing, enrichment culturing and in situ transcriptional analyses reveal their biogeochemical role as facultative aerobic chemoorganotrophs that may also mediate the reduction of Fe(III). Phylogenomic analyses of replicate assemblies corresponding to two groups of Marsarchaeota indicate that they branch between the Crenarchaeota and all other major archaeal lineages. Transcriptomic analyses of several Fe(III) oxide mat communities reveal that these organisms were actively transcribing two different terminal oxidase complexes in situ and genes comprising an F-420-dependent butanal catabolism. The broad distribution of Marsarchaeota in geothermal, microaerobic Fe(III) oxide mats suggests that similar habitat types probably played an important role in the evolution of archaea.Item Terminal oxidase diversity and function in Metallosphaera yellowstonensis: Gene expression and protein modeling suggest mechanisms of Fe(II) oxidation in the sulfolobales(2011-03) Kozubal, Mark A.; Dlakic, Mensur; Macur, Richard E.; Inskeep, William P.Metallosphaera yellowstonensis is a thermoacidophilic archaeon isolated from Yellowstone National Park that is capable of autotrophic growth using Fe(II), elemental S, or pyrite as electron donors. Analysis of the draft genome sequence from M. yellowstonensis strain MK1 revealed seven different copies of heme copper oxidases (subunit I) in a total of five different terminal oxidase complexes, including doxBCEF, foxABCDEFGHIJ, soxABC, and the soxM supercomplex, as well as a novel hypothetical two-protein doxB-like polyferredoxin complex. Other genes found in M. yellowstonensis with possible roles in S and or Fe cycling include a thiosulfate oxidase (tqoAB), a sulfite oxidase (som), a cbsA cytochrome b558/566, several small blue copper proteins, and a novel gene sequence coding for a putative multicopper oxidase (Mco). Results from gene expression studies, including reverse transcriptase (RT) quantitative PCR (qPCR) of cultures grown autotrophically on either Fe(II), pyrite, or elemental S showed that the fox gene cluster and mco are highly expressed under conditions where Fe(II) is an electron donor. Metagenome sequence and gene expression studies of Fe-oxide mats confirmed the importance of fox genes (e.g., foxA and foxC) and mco under Fe(II)-oxidizing conditions. Protein modeling of FoxC suggests a novel lysine-lysine or lysine-arginine heme B binding domain, indicating that it is likely the cytochrome component of a heterodimer complex with foxG as a ferredoxin subunit. Analysis of mco shows that it encodes a novel multicopper blue protein with two plastocyanin type I copper domains that may play a role in the transfer of electrons within the Fox protein complex.An understanding of metabolic pathways involved in aerobic iron and sulfur oxidation in Sulfolobales has broad implications for understanding the evolution and niche diversification of these thermophiles as well as practical applications in fields such as bioleaching of trace metals from pyritic ores.Item The Toxicity of the Aggregatibacter Actinomycetemcomitans Cytolethal Distending Toxin Correlates with Its Phosphatidylinositol-3,4,5-Triphosphate Phosphatase Activity(2016-02) Shenker, Bruce J.; Boesze-Battaglia, Kathleen; Scuron, Monika Damek; Walker, Lisa P.; Zekavat, Ali; Dlakic, MensurThe Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity, leading us to propose that Cdt toxicity is the result of PIP3 depletion and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signalling. To further explore this relationship, we have focused our analysis on identifying residues that comprise the catalytic pocket and are critical to substrate binding rather than catalysis. In this context, we have generated several CdtB mutants and demonstrate that, in each instance, the ability of the toxin to induce cell cycle arrest correlates with retention of phosphatase activity. We have also assessed the effect of Cdt on downstream components of the PI-3K signalling pathway. In addition to depletion of intracellular concentrations of PIP3, toxin-treated lymphocytes exhibit decreases in pAkt and pGSK3β. Further analysis indicates that toxin-treated cells exhibit a concomitant loss in Akt activity and increase in GSK3β kinase activity consistent with observed changes in their phosphorylation status. We demonstrate that cell susceptibility to Cdt is dependent upon dephosphorylation and concomitant activation of GSK3β. Finally, we demonstrate that, in addition to lymphocytes, HeLa cells exposed to a CdtB mutant that retains phosphatase activity and not DNase activity undergo G2 arrest in the absence of H2AX phosphorylation. Our results provide further insight into the mode of action by which Cdt may function as an immunotoxin and induce cell cycle arrest in target cells such as lymphocytes.Item The toxicity of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin correlates with its phosphatidylinositol-3,4,5-triphosphate phosphatase activity(2016-02) Shenker, Bruce J.; Boesze-Battaglia, Kathleen; Scuron, Monika Damek; Walker, Lisa P.; Zekavat, Ali; Dlakic, MensurThe Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity, leading us to propose that Cdt toxicity is the result of PIP3 depletion and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signalling. To further explore this relationship, we have focused our analysis on identifying residues that comprise the catalytic pocket and are critical to substrate binding rather than catalysis. In this context, we have generated several CdtB mutants and demonstrate that, in each instance, the ability of the toxin to induce cell cycle arrest correlates with retention of phosphatase activity. We have also assessed the effect of Cdt on downstream components of the PI-3K signalling pathway. In addition to depletion of intracellular concentrations of PIP3, toxin-treated lymphocytes exhibit decreases in pAkt and pGSK3β. Further analysis indicates that toxin-treated cells exhibit a concomitant loss in Akt activity and increase in GSK3β kinase activity consistent with observed changes in their phosphorylation status. We demonstrate that cell susceptibility to Cdt is dependent upon dephosphorylation and concomitant activation of GSK3β. Finally, we demonstrate that, in addition to lymphocytes, HeLa cells exposed to a CdtB mutant that retains phosphatase activity and not DNase activity undergo G2 arrest in the absence of H2AX phosphorylation. Our results provide further insight into the mode of action by which Cdt may function as an immunotoxin and induce cell cycle arrest in target cells such as lymphocytes.