Browsing by Author "Eshelman, Laura M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item All-sky polarization imaging of cloud thermodynamic phase(2019-02) Eshelman, Laura M.; Tauc, Martin J.; Shaw, Joseph A.Knowing the cloud thermodynamic phase (if a cloud is composed of ice crystals or liquid droplets) is crucial for many cloud remote sensing measurements. Further, this knowledge can help in simulating and interpreting cloud radiation measurements to better understand the role of clouds in climate, weather, and optical propagation. Knobelspiesse et al. [Atmos. Meas. Tech. 8, 1537 (2015)] showed that, for simulated zenith observations, the algebraic sign of the S1 Stokes parameter (related to the difference between perpendicular and parallel linear polarization in the scattering plane) can be used to detect cloud thermodynamic phase when observed with a ground-based passive polarimeter. In this paper, we describe the use of our all-sky imaging polarimeter to experimentally test this proposed method of detecting cloud thermodynamic phase in the entire sky dome. The zenith cloud phase was validated with a dual-polarization lidar instrument.Item Detection of polarization neutral points in observations of the combined corona and sky during the 21 August 2017 total solar eclipse(2020-07) Snik, Frans; Bos, Steven P.; Brackenhoff, Stefanie A.; Doelman, David S.; Por, Emiel H.; Bettonvil, Felix; Rodenhuis, Michiel; Vorobiev, Dmitry; Eshelman, Laura M.; Shaw, Joseph A.We report the results of polarimetric observations of the total solar eclipse of 21 August 2017 from Rexburg, Idaho (USA). We use three synchronized DSLR cameras with polarization filters oriented at 0°, 60°, and 120° to provide high-dynamic-range RGB polarization images of the corona and surrounding sky. We measure tangential coronal polarization and vertical sky polarization, both as expected. These observations provide detailed detections of polarization neutral points above and below the eclipsed Sun where the coronal polarization is canceled by the sky polarization. We name these special polarization neutral points after Minnaert and Van de Hulst.Item Digital all-sky polarization imaging of the total solar eclipse on 21 August 2017 in Rexburg, Idaho, USA(2020-07) Eshelman, Laura M.; Tauc, Martin Jan; Hashimoto, Taiga; Gillis, Kendra; Weiss, William; Stanley, Bryan; Hooser, Preston; Shaw, Glenn E.; Shaw, Joseph A.All-sky polarization images were measured from sunrise to sunset and during a cloud-free totality on 21 August 2017 in Rexburg, Idaho using two digital three-camera all-sky polarimeters and a time-sequential liquid-crystal-based all-sky polarimeter. Twenty-five polarimetric images were recorded during totality, revealing a highly dynamic evolution of the distribution of skylight polarization, with the degree of linear polarization becoming nearly zenith-symmetric by the end of totality. The surrounding environment was characterized with an infrared cloud imager that confirmed the complete absence of clouds during totality, an AERONET solar radiometer that measured aerosol properties, a portable weather station, and a hand-held spectrometer with satellite images that measured surface reflectance at and near the observation site. These observations confirm that previously observed totality patterns are general and not unique to those specific eclipses. The high temporal image resolution revealed a transition of a neutral point from the zenith in totality to the normal Babinet point just above the Sun after third contact, providing the first indication that the transition between totality and normal daytime polarization patterns occurs over of a time period of approximately 13 s.