Browsing by Author "Fick, Damon"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Improving Connectivity: Innovative Fiber-Reinforced Polymer Structures for Wildlife, Bicyclists, and/or Pedestrians(Nevada Department of Transportation, 2022-09) Bell, Matthew; Ament, Rob; Fick, Damon; Huijser, MarcelEngineers and ecologists continue to explore new methods and adapt existing techniques to improve highway mitigation measures that increase motorist safety and conserve wildlife species. Crossing structures, overpasses and underpasses, combined with fences, are some of the most highly effective mitigation measures employed around the world to reduce wildlife-vehicle collisions (WVCs) with large animals, increase motorist safety, and maintain habitat connectivity across transportation networks for many other types and sizes of wildlife. Published research on structural designs and materials for wildlife crossings is limited and suggests relatively little innovation has occurred. Wildlife crossing structures for large mammals are crucial for many highway mitigation strategies, so there is a need for new, resourceful, and innovative techniques to construct these structures. This report explored the promising application of fiber-reinforced polymers (FRPs) to a wildlife crossing using an overpass. The use of FRP composites has increased due to their high strength and light weight characteristics, long service life, and low maintenance costs. They are highly customizable in shape and geometry and the materials used (e.g., resins and fibers) in their manufacture. This project explored what is known about FRP bridge structures and what commercial materials are available in North America that can be adapted for use in a wildlife crossing using an overpass structure. A 12-mile section of US Highway 97 (US-97) in Siskiyou County, California was selected as the design location. Working with the California Department of Transportation (Caltrans) and California Department of Fish and Wildlife (CDFW), a site was selected for the FRP overpass design where it would help reduce WVCs and provide habitat connectivity. The benefits of a variety of FRP materials have been incorporated into the US-97 crossing design, including in the superstructure, concrete reinforcement, fencing, and light/sound barriers on the overpass. Working with Caltrans helped identify the challenges and limitations of using FRP materials for bridge construction in California. The design was used to evaluate the life cycle costs (LCCs) of using FRP materials for wildlife infrastructure compared to traditional materials (e.g., concrete, steel, and wood). The preliminary design of an FRP wildlife overpass at the US-97 site provides an example of a feasible, efficient, and constructible alternative to the use of conventional steel and concrete materials. The LCC analysis indicated the preliminary design using FRP materials could be more cost effective over a 100-year service life than ones using traditional materials.Item Test of 90-Foot Post-Tensioned Concrete Girder with Unbonded Tendons(American Concrete Institute, 2021-09) Pujol, Santiago; Fick, Damon; Fargier-Gabaldón, Luis B.A full-scale post-tensioned concrete girder with unbonded tendons was tested to investigate whether, under vertical forces, a full flexural mechanism (with three hinging regions) would form, and what strand stress would be reached in that condition. The specimen was a 0.91 m (3 ft) deep T-beam with a 2.43 m (8 ft) wide flange, spanning over two supports spaced at 18.3 m (60 ft) with two 4.6 m (15 ft) cantilevers and featured a parabolic tendon profile. Transverse reinforcement to resist shear and longitudinal “mild” reinforcement were also provided. A uniformly distributed load was applied on the main span and concentrated loads were applied to the ends of the cantilevers. While the main span was loaded, the two concentrated loads on the cantilevers provided a reaction force to minimize rotations at supports. At the end of the test, the girder deflected 278 mm (10.9 in., L/65) and carried 231 kN/m (15.5 kip/ft) over the main span. A full plastic mechanism formed with hinging regions at supports and at midspan. Test results suggest the unbonded tendons nearly reached their nominal strength (fpu) and that a limit analysis is adequate for estimating the flexural strength of comparable post-tensioned girders.Item US-191/MT-64 Wildlife & Transportation Assessment(Center for large Landscape Conservation, 2023-11) Fairbank, Elizabeth; Penrod, Kristeen; Wearn, Anna; Blank, Matt; Bell, Matthew; Huijser, Marcel; Ament, Rob; Fick, Damon; Breuer, Abigail; Hance, BradenThe US Highway 191 (US-191)/Montana Highway 64 (MT-64) Wildlife & Transportation Assessment (the “Assessment”) improves understanding of the issues affecting driver safety, wildlife mortality, and wildlife movement along the major routes that connect Yellowstone National Park, the Custer Gallatin National Forest, and other public lands to the growing population centers of Bozeman, Big Sky, and nearby communities in Southwest Montana. By engaging personnel from multiple federal, state, and local agencies along with key stakeholders to examine problems and possibilities through the lens of spatial ecology, the US-191/MT-64 Wildlife & Transportation Assessment brings new insight into the impact of two major roads that unite local communities yet divide the landscape and natural habitats. The information included in this report should inform and support area communities and agency decision-makers to select and pursue wildlife accommodation options. With the passage of the Infrastructure Investment and Jobs Act of 2021, significant funds for wildlife accommodation measures are available nationwide on a competitive basis. The US-191/MT-64 Wildlife & Transportation Assessment better equips part of Southwest Montana’s gateway to Yellowstone National Park to take advantage of new funding opportunities.Item The Use of Fiber-Reinforced Polymers in Wildlife Crossing Infrastructure(MDPI, 2020-02) Bell, Matthew; Fick, Damon; Ament, Rob; Lister, Nina-MarieThe proven effectiveness of highway crossing infrastructure to mitigate wildlife-vehicle collisions with large animals has made it a preferred method for increasing motorist and animal safety along road networks around the world. The crossing structures also provide safe passage for small- and medium-sized wildlife. Current methods to build these structures use concrete and steel, which often result in high costs due to the long duration of construction and the heavy machinery required to assemble the materials. Recently, engineers and architects are finding new applications of fiber-reinforced polymer (FRP) composites, due to their high strength-to-weight ratio and low life-cycle costs. This material is better suited to withstand environmental elements and the static and dynamic loads required of wildlife infrastructure. Although carbon and glass fibers along with new synthetic resins are most commonly used, current research suggests an increasing incorporation and use of bio-based and recycled materials. Since FRP bridges are corrosion resistant and hold their structural properties over time, owners of the bridge can benefit by reducing costly and time-consuming maintenance over its lifetime. Adapting FRP bridges for use as wildlife crossing structures can contribute to the long-term goals of improving motorist and passenger safety, conserving wildlife and increasing cost efficiency, while at the same time reducing plastics in landfills.