Browsing by Author "Fux, C. A."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Bacterial biofilms: a diagnostic and therapeutic challenge(2003-12) Fux, C. A.; Stoodley, Paul; Hall-Stoodley, Luanne; Costerton, J. WilliamBacteria have traditionally been regarded as individual organisms growing in homogeneous planktonic populations. However, bacteria in natural environments usually form communities of surface-adherent organisms embedded in an extracellular matrix, called biofilms. Current antimicrobial strategies often fail to control bacteria in the biofilm mode of growth. Treatment failure is particularly frequent in association with intracorporeal or transcutaneous medical devices and compromised host immunity. The rising prevalence of these risk factors over the last decades has paralleled the increase in biofilm infections. This review discusses the shortcomings of current therapies against biofilms both in theory and with clinical examples. Biofilm characteristics are described with a focus on new diagnostic and therapeutic targets.Item Biofilm-related infections of cerebrospinal fluid shunts(2006-04) Fux, C. A.; Quigley, Mark; Worel, A. M.; Post, C.; Zimmerli, S.; Ehrlich, Garth D.; Veeh, Richard HaroldCerebrospinal fluid (CSF) shunts carry a high risk of complications. Infections represent a major cause of shunt failure. Diagnosis and therapy of such infections are complicated by the formation of bacterial biofilms attached to shunt surfaces. This study correlated the pathophysiology and clinical course of biofilm infections with microscopic findings on the respective shunts. Surface irregularities, an important risk factor for shunt colonisation with bacteria, were found to increase over time because of silicone degradation. Scanning electron-microscopy (SEM) documented residual biological material (dead biofilm), which can further promote extant bacterial adhesion, on newly manufactured shunts. Clinical course, and SEM both documented bacterial dissemination against CSF flow and the monodirectional valve. In all cases, biofilms grew on both the inner and outer surfaces of the shunts. Microscopy and conventional culture detected all bacterial shunt infections. Analyses of 16S rDNA sequences using conserved primers identified bacteria in only one of three cases, probably because of previous formalin fixation of the samples.Item Can laboratory reference strains mirror 'real-world' pathogenesis?(2005-02) Fux, C. A.; Shirtliff, Mark E.; Stoodley, Paul; Costerton, J. WilliamThe extraordinary plasticity of bacterial genomes raises concerns about the adequacy of laboratory-adapted reference strains for the study of 'real world' pathogenesis. Some laboratory strains have been sub-cultured for decades since their first isolation and might have lost important pathophysiological characteristics. Evidence is presented that bacteria rapidly adapt to in vitro conditions. Genomic differences between laboratory reference strains and corresponding low-passage clinical isolates are reviewed. It appears that no bacterial strain can truly represent its species. For DNA microarray and proteomic studies, this limitation might be overcome by the summation of individual genomes to produce a species-specific virtual supragenome.Item Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model(2004-07) Fux, C. A.; Wilson, Suzanne; Stoodley, PaulCatheter-related bloodstream infections due to Staphylococcus aureus are of increasing clinical importance. The pathophysiological steps leading to colonization and infection, however, are still incompletely defined. We observed growth and detachment of S. aureus biofilms in an in vitro catheter-infection model by using time-lapse microscopy. Biofilm emboli were characterized by their size and their susceptibility for oxacillin. Biofilm dispersal was found to be a dynamic process in which clumps of a wide range of diameters detach. Large detached clumps were highly tolerant to oxacillin compared with exponential-phase planktonic cultures. Interestingly, the degree of antibiotic tolerance in stationary-phase planktonic cultures was equal to that in the large clumps. The mechanical disruption of large clumps reduced the minimal bactericidal concentration (MBC) by more than 1,000 times. The MBC for whole biofilm effluent, consisting of particles with an average number of 20 bacteria was 3.5 times higher than the MBC for planktonic cultures. We conclude that the antibiotic resistance of detached biofilm particles depends on the embolus size and could be attributed to nutrient-limited stationary-phase physiology of cells within the clumps. We hypothesize that the detachment of multicellular clumps may explain the high rate of symptomatic metastatic infections seen with S. aureus.Item Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP(2005-08) Balaban, Naomi; Stoodley, Paul; Fux, C. A.; Wilson, Suzanne; Costerton, J. William; Dell'Acqua, GiorgioStaphylococcus aureus and Staphylococcus epidermidis associated with implantable medical devices, are often difficult to treat with conventional antimicrobials. Formation of a biofilm and subsequent production of toxins are two distinct mechanisms considered important in foreign body infections. Staphylococcal virulence is caused by a complex regulatory process, which involves cell-to-cell communication through the release and response to chemical signals in a process known as quorum sensing. We explored the possibility of preventing infections by interfering with biofilm formation and toxin production using the quorum sensing inhibitor ribonucleic-acid-III-inhibiting peptide. In our studies ribonucleic-acid-III-inhibiting peptide prevented graft-associated infections caused by all species of staphylococci tested so far, including methicillin resistant S. aureus and S. epidermidis. Ribonucleic-acid-III-inhibiting peptide also enhances the effects of antibiotics and cationic peptides in the clearance of normally recalcitrant biofilm infections. Ribonucleic-acid-III-inhibiting peptide is nontoxic, highly stable, and no resistant strains have been found so far, suggesting that ribonucleic-acid-III-inhibiting peptide may be used to coat medical devices or used systemically to prevent infections. When the target of ribonucleic-acid-III activating protein activity is disrupted, biofilm formation is reduced under flow and static conditions and genes important for toxin production or biofilm formation are down-regulated. These in vitro data help explain why ribonucleic-acid-III-inhibiting peptide seems to be effective in preventing staphylococcal infections.Item Role of biofilms in neurosurgical device-related infections(2005-10) Baxton Jr, Ernest E.; Ehrlich, Garth D.; Hall-Stoodley, Luanne; Stoodley, Paul; Veeh, Rick; Fux, C. A.; Hu, Fen Z.; Quigley, Matthew; Post, J. C.Bacterial biofilms have recently been shown to be important in neurosurgical device-related infections. Because the concept of biofilms is novel to most practitioners, it is important to understand that both traditional pharmaceutical therapies and host defense mechanisms that are aimed at treating or overcoming free-swimming bacteria are largely ineffective against the sessile bacteria in a biofilm. Bacterial biofilms are complex surface-attached structures that are composed of an extruded extracellular matrix in which the individual bacteria are embedded. Superimposed on this physical architecture is a complex system of intercellular signaling, termed quorum sensing. These complex organizational features endow biofilms with numerous microenvironments and a concomitant number of distinct bacterial phenotypes. Each of the bacterial phenotypes within the biofilm displays a unique gene expression pattern tied to nutrient availability and waste transport. Such diversity provides the biofilm as a whole with an enormous survival advantage when compared to the individual component bacterial cells. Thus, it is appropriate to view the biofilm as a multicellular organism, akin to metazoan eukaryotic life. Bacterial biofilms are much hardier than free floating or planktonic bacteria and are primarily responsible for device-related infections. Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the paradigm of biofilm-associated chronic infections is spreading to the clinical world. Understanding how these biofilm infections affect patients with neurosurgical devices is a prerequisite to developing strategies for their treatment and prevention.Item Survival strategies of infectious biofilms(2005-01) Fux, C. A.; Costerton, J. William; Stewart, Philip S.; Stoodley, PaulModern medicine is facing the spread of biofilm-related infections. Bacterial biofilms are difficult to detect in routine diagnostics and are inherently tolerant to host defenses and antibiotic therapies. In addition, biofilms facilitate the spread of antibiotic resistance by promoting horizontal gene transfer. We review current concepts of biofilm tolerance with special emphasis on the role of the biofilm matrix and the physiology of biofilm-embedded cells. The heterogeneity in metabolic and reproductive activity within a biofilm correlates with a non-uniform susceptibility of enclosed bacteria. Recent studies have documented similar heterogeneity in planktonic cultures. Nutritional starvation and high cell density, two key characteristics of biofilm physiology, also mediate antimicrobial tolerance in stationary-phase planktonic cultures. Advances in characterizing the role of stress response genes, quorum sensing and phase variation in stationary-phase planktonic cultures have shed new light on tolerance mechanisms within biofilm communities.Item Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration(2005-04) Rupp, Cory J.; Fux, C. A.; Stoodley, PaulStaphylococcus aureus is a leading cause of catheter-related bloodstream infections and endocarditis. Both involve (i) biofilm formation, (ii) exposure to fluid shear, and (iii) high rates of dissemination. We found that viscoelasticity allowed S. aureus biofilms to resist detachment due to increased fluid shear by deformation, while remaining attached to a surface. Further, we report that S. aureus microcolonies moved downstream by rolling along the lumen walls of a glass flow cell, driven by the flow of the overlying fluid. The rolling appeared to be controlled by viscoelastic tethers. This tethered rolling may be important for the surface colonization of medical devices by nonmotile bacteria.