Browsing by Author "Groenendijk, Margriet"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Reconciling Precipitation with Runoff: Observed Hydrological Change in the Midlatitudes(2015-12) Osborne, Joe M.; Lambert, F. Hugo; Groenendijk, Margriet; Harper, Anna B.; Koven, Charles D.; Poulter, Benjamin; Pugh, Thomas A. M.; Sitch, Stephen; Stocker, Benjamin D.; Wiltshire, Andy; Zaehie, SonkeCentury-long observed gridded land precipitation datasets are a cornerstone of hydrometeorological research. But recent work has suggested that observed Northern Hemisphere midlatitude (NHML) land mean precipitation does not show evidence of an expected negative response to mid-twentieth-century aerosol forcing. Utilizing observed river discharges, the observed runoff is calculated and compared with observed land precipitation. The results show a near-zero twentieth-century trend in observed NHML land mean runoff, in contrast to the significant positive trend in observed NHML land mean precipitation. However, precipitation and runoff share common interannual and decadal variability. An obvious split, or breakpoint, is found in the NHML land mean runoff–precipitation relationship in the 1930s. Using runoff simulated by six land surface models (LSMs), which are driven by the observed precipitation dataset, such breakpoints are absent. These findings support previous hypotheses that inhomogeneities exist in the early-twentieth-century NHML land mean precipitation record. Adjusting the observed precipitation record according to the observed runoff record largely accounts for the departure of the observed precipitation response from that predicted given the real-world aerosol forcing estimate, more than halving the discrepancy from about 6 to around 2 W m−2. Consideration of complementary observed runoff adds support to the suggestion that NHML-wide early-twentieth-century precipitation observations are unsuitable for climate change studies. The agreement between precipitation and runoff over Europe, however, is excellent, supporting the use of whole-twentieth-century observed precipitation datasets here.Item Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms(2012-03-07) Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E.; Ammann, Christof; Arain, M. Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan G.; Beringer, Jason; Bernhofer, Christian; Black, T. Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J.; Dellwik, Ebba; Desai, Ankur R.; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y.; Jones, Mike B.; Kiely, Gerard; Kolb, Thomas E.; Kutsch, Werner L.; Lafleur, Peter; Lawrence, David M.; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A.; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Olejnik, Janusz; Pilegaard, Kim; Paw U, Kyaw Tha; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L.; Seufert, Günther; Spano, Donatella; Stoy, Paul C.; Sutton, Mark A.; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, XuhuiIt is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystemclimate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.