Browsing by Author "Hu, Xiao"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping(Wiley, 2021-06) Li, Huang; Hu, Xiao; Lovell, John T.; Grabowski, Paul P.; Mamidi, Sujan; Chen, Cindy; Amirebrahimi, Mojgan; Kahanda, Indika; Mumey, Brendan; Barry, Kerrie; Kudrna, David; Schmutz, Jeremy; Lachowiec, Jennifer; Lu, ChaofuCamelina [Camelina sativa (L.) Crantz] is an oilseed crop in the Brassicaceae family that is currently being developed as a source of bioenergy and healthy fatty acids. To facilitate modern breeding efforts through marker-assisted selection and biotechnology, we evaluated genetic variation among a worldwide collection of 222 camelina accessions. We performed whole-genome resequencing to obtain single nucleotide polymorphism (SNP) markers and to analyze genomic diversity. We also conducted phenotypic field evaluations in two consecutive seasons for variations in key agronomic traits related to oilseed production such as seed size, oil content (OC), fatty acid composition, and flowering time. We determined the population structure of the camelina accessions using 161,301 SNPs. Further, we identified quantitative trait loci (QTL) and candidate genes controlling the above field-evaluated traits by genome-wide association studies (GWAS) complemented with linkage mapping using a recombinant inbred line (RIL) population. Characterization of the natural variation at the genome and phenotypic levels provides valuable resources to camelina genetic studies and crop improvement. The QTL and candidate genes should assist in breeding of advanced camelina varieties that can be integrated into the cropping systems for the production of high yield of oils of desired fatty acid composition.Item Search for a Shared Genetic or Biochemical Basis for Biofilm Tolerance to Antibiotics across Bacterial Species(American Society for Microbiology, 2022-04) Stewart, Philip S.; Williamson, Kerry S.; Boegli, Laura; Hamerly, Timothy; White, Ben; Scott, Liam; Hu, Xiao; Mumey, Brendan M.; Franklin, Michael J.; Bothner, Brian; Vital-Lopez, Francisco G.; Wallqvist, Anders; James, Garth A.Is there a universal genetically programmed defense providing tolerance to antibiotics when bacteria grow as biofilms? A comparison between biofilms of three different bacterial species by transcriptomic and metabolomic approaches uncovered no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for 3 days and then challenged with respective antibiotics (ciprofloxacin, daptomycin, and tigecycline) for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms compared to planktonic cultures. Global transcriptomic profiling of gene expression comparing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed. Extracellular metabolites were measured to characterize the utilization of carbon sources between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited a species-specific signature of stationary phase, no conserved gene, gene set, or common functional pathway could be identified that changed consistently across the three microorganisms. Across the three species, glucose consumption was increased in biofilms compared to planktonic cells, and alanine and aspartic acid utilization were decreased in biofilms compared to planktonic cells. The reasons for these changes were not readily apparent in the transcriptomes. No common shift in the utilization pattern of carbon sources was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our measurements do not support the existence of a common genetic or biochemical basis for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins, and metabolic pathways that influence the physiological state of individual microorganisms in biofilms and contribute to antibiotic tolerance.