Browsing by Author "Katul, Gabriel"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Causality and Persistence in Ecological Systems: A Nonparametric Spectral Granger Causality Approach(2012-02-20) Detto, Matteo; Molini, Annalisa; Katul, Gabriel; Stoy, Paul C.; Palmroth, Sari; Baldocchi, DennisDirectionality in coupling, defined as the linkage relating causes to their effects at a later time, can be used to explain the core dynamics of ecological systems by untangling direct and feedback relationships between the different components of the systems. Inferring causality from measured ecological variables sampled through time remains a formidable challenge further made difficult by the action of periodic drivers overlapping the natural dynamics of the system. Periodicity in the drivers can often mask the self-sustained oscillations originating from the autonomous dynamics. While linear and direct causal relationships are commonly addressed in the time domain, using the well-established machinery of Granger causality (G-causality), the presence of periodic forcing requires frequency-based statistics (e.g., the Fourier transform), able to distinguish coupling induced by oscillations in external drivers from genuine endogenous interactions. Recent nonparametric spectral extensions of G-causality to the frequency domain pave the way for the scale-by-scale decomposition of causality, which can improve our ability to link oscillatory behaviors of ecological networks to causal mechanisms. The performance of both spectral G-causality and its conditional extension for multivariate systems is explored in quantifying causal interactions within ecological networks. Through two case studies involving synthetic and actual time series, it is demonstrated that conditional G-causality outperforms standard G-causality in identifying causal links and their concomitant timescales.Item Linking meteorology, turbulence, and air chemistry in the Amazon Rain Forest(2016-12) Fuentes, Jose D.; Chamecki, Marcelo; Nascimento dos Santos, Rosa Maria; von Randow, Celso; Stoy, Paul C.; Katul, Gabriel; Fitzjarrald, David; Manzi, Antonio O.; Gerken, Tobias; Trowbridge, Amy M.; Freire, Livia Souza; Ruiz-Plancarte, Jesus; Furtunato Maia, Jair Max; Tota, Julio; Dias, Nelson; Fisch, Gilberto; Schumacher, Courtney; Acevedo, Otavio C.; Mercer, Juliane Rezende; Yanez-Serrano, Ana MariaWe describe the salient features of a field study whose goals are to quantify the vertical distribution of plant-emitted hydrocarbons and their contribution to aerosol and cloud condensation nuclei production above a central Amazonian rain forest. Using observing systems deployed on a 50-m meteorological tower, complemented with tethered balloon deployments, the vertical distribution of hydrocarbons and aerosols was determined under different boundary layer thermodynamic states. The rain forest emits sufficient reactive hydrocarbons, such as isoprene and monoterpenes, to provide precursors of secondary organic aerosols and cloud condensation nuclei. Mesoscale convective systems transport ozone from the middle troposphere, enriching the atmospheric boundary layer as well as the forest canopy and surface layer. Through multiple chemical transformations, the ozone-enriched atmospheric surface layer can oxidize rain forest-emitted hydrocarbons. One conclusion derived from the field studies is that the rain forest produces the necessary chemical species and in sufficient amounts to undergo oxidation and generate aerosols that subsequently activate into cloud condensation nuclei.