Browsing by Author "Komlos, John"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Biofilm barriers to contain and degrade dissolved trichloroethylene(2004-04) Komlos, John; Cunningham, Alfred B.; Camper, Anne K.; Sharp, Robert R.Biologically produced subsurface barriers (i.e., biofilm barriers) are a viable technology for controlling contaminant migration from hazardous waste sites. Biofilm barriers are created through the injection of bacteria and selective growth medium into a series of wells downstream of a contaminant plume. Adequate substrate addition enables the bacteria to grow and form thick biofilms capable of uniform plugging of the subsurface. This technology has been successful in significantly reducing porous media permeability in bench-scale and field-scale applications. The research presented herein expands on current biofilm. barrier technology by examining the feasibility of using a biofilm barrier to not only control contaminant migration through permeability reduction, but also facilitate contaminant biodegradation. ne experimental scenario involved the creation of a dual-species biofilm matrix: one organism to reduce porous media permeability through thick biofilm formation and another organism to degrade a contaminant, in this case trichloroethylene (TCE). Porous medium column experiments demonstrated that a dual-species biofilm barrier can be created and that growth medium concentration was a very important variable in controlling simultaneous TCE degradation and permeability reduction.Item Effect of co-substrate concentration on dual-species population distribution, permeability reduction and trichloroethylene (TCE) biodegradation in porous media(Montana State University - Bozeman, College of Engineering, 2001) Komlos, JohnItem Effect of substrate concentration on dual-species biofilm population densities of Klebsiella oxytoca and Burkholderia cepacia in porous media(2006) Komlos, John; Cunningham, Alfred B.; Camper, Anne K.; Sharp, Robert R.The long-term operation of bioremediation technologies relies on the success of the contaminant-degrading microorganism(s) to compete for available resources with microorganisms already present in an aquifer or those that may contaminate a bioreactor. Though research has been performed studying the interaction of multiple species in batch and chemostat reactors, little work has been done looking at multi-species interactions in environments that more closely resemble field-scale applications. The research presented herein examined the interaction of Burkholderia cepacia PR1-pTOM31c, an aerobic trichloroethylene (TCE)-degrading bacterium, with Klebsiella oxytoca, a facultative bacterium, in a flow-through porous media (PM) reactor. Growth characteristics and population distributions in PM were compared to previously reported values from batch and chemostat reactors. The faster growing organism in batch experiments (K. oxytoca) did not always have the greater population density in dual-species PM experiments. The biofilm population distribution was influenced by substrate concentration, with B. cepacia having a greater dual-species population density than K. oxytoca at a low (30 mg/L dissolved organic carbon [DOC]) substrate concentration and K. oxytoca having a greater population density at a high (700 mg/L DOC) substrate concentration. This change in species population distribution with change in substrate concentration, which was not observed in batch reactors, was also observed in chemostat reactors. Therefore, manipulation of substrate concentration enabled the control of species dominance to the advantage of the TCE degrading population in this dual-species PM system and may provide a mechanism to enhance bioremediation scenarios involving TCE or other contaminants of concern. © 2005 Wiley Periodicals, Inc.Item Interaction of Klebsiella oxytoca and Burkholderia cepacia in dual-species batch cultures and biofilms as a function of growth rate and substrate concentration(2005-01) Komlos, John; Cunningham, Alfred B.; Camper, Anne K.; Sharp, Robert R.Dual-species microbial interactions have been extensively reported for batch and continuous culture environments. However, little research has been performed on dual-species interaction in a biofilm. This research examined the effects of growth rate and substrate concentration on dual-species population densities in batch and biofilm reactors. In addition, the feasibility of using batch reactor kinetics to describe dual-species biofilm interactions was explored. The scope of the research was directed toward creating a dual-species biofilm for the biodegradation of trichloroethylene, but the findings are a significant contribution to the study of dual-species interactions in general. The two bacterial species used were Burkholderia cepacia PR1-pTOM(31c), an aerobic organism capable of constitutively mineralizing trichloroethylene (TCE), and Klebsiella oxytoca, a highly mucoid, facultative anaerobic organism. The substrate concentrations used were different dilutions of a nutrient-rich medium resulting in dissolved organic carbon (DOC) concentrations on the order of 30, 70, and 700 mg/L. Presented herein are single- and dual-species population densities and growth rates for these two organisms grown in batch and continuous-flow biofilm reactors. In batch reactors, planktonic growth rates predicted dual-species planktonic species dominance, with the faster-growing organism (K. oxytoca) outcompeting the slower-growing organism (B. cepacia). In a dual-species biofilm, however, dual-species planktonic growth rates did not predict which organism would have the higher dual-species biofilm population density. The relative fraction of each organism in a dual-species biofilm did correlate with substrate concentration, with B. cepacia having a greater proportional density in the dual-species culture with K. oxytoca at low (30 and 70 mg/L DOC) substrate concentrations and K. oxytoca having a greater dual-species population density at a high (700 mg/L DOC) substrate concentration. Results from this research demonstrate the effectiveness of using substrate concentration to control population density in this dual-species biofilm.