Browsing by Author "Lauchnor, Ellen G."
Now showing 1 - 16 of 16
- Results Per Page
- Sort Options
Item Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system(2013-02) Lauchnor, Ellen G.; Schultz, Logan N.; Bugni, S.; Mitchell, Andrew C.; Cunningham, Alfred B.; Gerlach, RobinStrontium-90 is a principal radionuclide contaminant in the subsurface at several Department of Energy sites in the Western U.S., causing a threat to groundwater quality in areas such as Hanford, WA. In this work, we used laboratory-scale porous media flow cells to examine a potential remediation strategy employing coprecipitation of strontium in carbonate minerals. CaCO3 precipitation and strontium coprecipitation were induced via ureolysis by Sporosarcina pasteurii in two-dimensional porous media reactors. An injection strategy using pulsed injection of calcium mineralization medium was tested against a continuous injection strategy. The pulsed injection strategy involved periods of lowered calcite saturation index combined with short high fluid velocity flow periods of calcium mineralization medium followed by stagnation (no-flow) periods to promote homogeneous CaCO3 precipitation. By alternating the addition of mineralization and growth media the pulsed strategy promoted CaCO3 precipitation while sustaining the ureolytic culture over time. Both injection strategies achieved ureolysis with subsequent CaCO3 precipitation and strontium coprecipitation. The pulsed injection strategy precipitated 71−85% of calcium and 59% of strontium, while the continuous injection was less efficient and precipitated 61% of calcium and 56% of strontium. Over the 60-day operation of the pulsed reactors, ureolysis was continually observed, suggesting that the balance between growth and precipitation phases allowed for continued cell viability. Our results support the pulsed injection strategy as a viable option for ureolysis-induced strontium coprecipitation because it may reduce the likelihood of injection well accumulation caused by localized mineral plugging while Sr coprecipitation efficiency is maintained in field-scale applications.Item Design of a meso-scale high pressure vessel for the laboratory examination of biogeochemical subsurface processes(2015-02) Phillips, Adrienne J.; Eldring, Joseph; Hiebert, Dwight Randall; Lauchnor, Ellen G.; Mitchell, Andrew C.; Cunningham, Alfred B.; Spangler, Lee H.; Gerlach, RobinBiocides are critical components of hydraulic fracturing (“fracking†) fluids used for unconventional shale gas development. Bacteria may cause bioclogging and inhibit gas extraction, produce toxic hydrogen sulfide, and induce corrosion leading to downhole equipment failure. The use of biocides such as glutaraldehyde and quaternary ammonium compounds has spurred a public concern and debate among regulators regarding the impact of inadvertent releases into the environment on ecosystem and human health. This work provides a critical review of the potential fate and toxicity of biocides used in hydraulic fracturing operations. We identified the following physicochemical and toxicological aspects as well as knowledge gaps that should be considered when selecting biocides: (1) uncharged species will dominate in the aqueous phase and be subject to degradation and transport whereas charged species will sorb to soils and be less bioavailable; (2) many biocides are short-lived or degradable through abiotic and biotic processes, but some may transform into more toxic or persistent compounds; (3) understanding of biocides’ fate under downhole conditions (high pressure, temperature, and salt and organic matter concentrations) is limited; (4) several biocidal alternatives exist, but high cost, high energy demands, and/or formation of disinfection byproducts limits their use. This review may serve as a guide for environmental risk assessment and identification of microbial control strategies to help develop a sustainable path for managing hydraulic fracturing fluids.Item Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air interface(2015-11) Villa, Federica; Pitts, Betsey; Lauchnor, Ellen G.; Cappitelli, Francesca; Stewart, Philip S.Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments. To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network like structure following surface topography; (iii) cooperation between phototrophs and heterotrophs and cross feeding processes; (iv) ability to change the chemical parameters that characterize the microhabitats; (v) survival under desiccation and (vi) biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments.Item Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms(2015-03) Kesaano, M.; Gardner, Robert D.; Moll, Karen M.; Lauchnor, Ellen G.; Gerlach, Robin; Peyton, Brent M.; Sims, R. C.Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake.Item Effect of selenite on the morphology and respiratory activity of Phanerochaete chrysosporium biofilms(2016-06) Espinosa-Ortiz, Erika J.; Pechaud, Yoan; Lauchnor, Ellen G.; Eldon, Rene R.; Gerlach, Robin; Peyton, Brent M.; van Hullebusch, Eric D.; Lens, Piet N. L.The temporal and spatial effects of selenite (SeO32-) on the physical properties and respiratory activity of Phanerochaete chrysosporium biofilms, grown in flow-cell reactors, were investigated using oxygen microsensors and confocal laser scanning microscopy (CLSM) imaging. Exposure of the biofilm to a SeO32- load of 1.67 mg Se L-1 h-1 (10 mg Se L-1 influent concentration), for 24 h, resulted in a 20% reduction of the O2 flux, followed by a ~10% decrease in the glucose consumption rate. Long-term exposure (4 days) to SeO32- influenced the architecture of the biofilm by creating a more compact and dense hyphal arrangement resulting in a decrease of biofilm thickness compared to fungal biofilms grown without SeO32-. To the best of our knowledge, this is the first time that the effect of SeO32- on the aerobic respiratory activity on fungal biofilms is described.Item Engineered applications of ureolytic biomineralization: A review(2013-07) Phillips, Adrienne J.; Gerlach, Robin; Lauchnor, Ellen G.; Mitchell, Andrew C.; Cunningham, Alfred B.; Spangler, Lee H.Microbially induced calcium carbonate (CaCO3) precipitation (MICP) is a widely explored and promising technology for use in various engineering applications. In this review, CaCO3 precipitation induced via urea hydrolysis (ureolysis) is examined for improving construction materials, cementing porous media, hydraulic control, and remediating environmental concerns. The control of MICP is explored through the manipulation of three factors: (1) the ureolytic activity (of microorganisms), (2) the reaction and transport rates of substrates, and (3) the saturation conditions of carbonate minerals. Many combinations of these factors have been researched to spatially and temporally control precipitation. This review discusses how optimization of MICP is attempted for different engineering applications in an effort to highlight the key research and development questions necessary to move MICP technologies toward commercial scale applications.Item Evaluation of Biofilm Induced Urinary Infection Stone Formation in a Novel Laboratory Model System(2018-01) Hobbs, Trace; Schultz, Logan N.; Lauchnor, Ellen G.; Gerlach, Robin; Lange, D.Purpose Infection stones, which comprise approximately 15% of all urinary tract stones, are induced by infection with urease-positive pathogens. The bacteria in the stone matrix present significant treatment impediments compared to metabolic kidney stones. While much is known about how urinary composition regulates metabolic stone formation, there is a general lack of knowledge of which urinary factors regulate the rate of infection stone formation. Unfortunately more in-depth research into infection stones is limited by the lack of suitable models for real-time study of bacterial biofilm formation and stone formation under varying conditions. Materials and Methods We developed an in vitro model to study infection stone formation. The model closely represents the processes that occur in vivo, including the observed migration of ureolytic bacteria (our culture of Proteus mirabilis) from the bladder to the kidneys, followed by biofilm and stone formation in the kidney. We used scanning electron and confocal laser microscopy, x-ray diffraction, biological counts and dissolved chemical analyses to evaluate the model system. Results Crystals that formed in the system resembled clinically removed struvite stones in structure and composition. Results showed that the degree of ureolysis required to significantly change urine pH was minimal, bacterial communities inhabited the ureter, and upstream colonization and struvite formation required lag time. Conclusions These results have implications for the detection and treatment of struvite stones. Currently this model is being used to study specific urinary factors that regulate struvite formation to identify treatment options, which combined with antibiotics would improve treatment of these stones and decrease recurrence.Item Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression(2016-08) Pabst, Breana; Pitts, Betsey; Lauchnor, Ellen G.; Stewart, Philip S.An experimental model that mimicked the structure and characteristics of in vivo biofilm infections, such as those occurring in the lung or in dermal wounds where no biomaterial surface is present, was developed. In these infections, microbial biofilm forms as cell aggregates interspersed in a layer of mucus or host matrix material. This structure was modeled by filling glass capillary tubes with an agarose gel that had been seeded with Staphylococcus aureus bacteria and then incubating the gel biofilm in medium for up to 30 h. Confocal microscopy showed that the bacteria formed in discrete pockets distributed throughout the gel matrix. These aggregates enlarged over time and also developed a size gradient, with the clusters being larger near the nutrient- and oxygen-supplied interface and smaller at greater depths. Bacteria entrapped in gels for 24 h grew slowly (specific growth rate, 0.06 h−1) and were much less susceptible to oxacillin, minocycline, or ciprofloxacin than planktonic cells. Microelectrode measurements showed that the oxygen concentration decreased with depth into the gel biofilm, falling to values less than 3% of air saturation at depths of 500 μm. An anaerobiosis-responsive green fluorescent protein reporter gene for lactate dehydrogenase was induced in the region of the gel where the measured oxygen concentrations were low, confirming biologically relevant hypoxia. These results show that the gel biofilm model captures key features of biofilm infection in mucus or compromised tissue: formation of dense, distinct aggregates, reduced specific growth rates, local hypoxia, and antibiotic tolerance.Item Impact of Mineral Precipitation on Flow and Mixing in Porous Media Determined by Microcomputed Tomography and MRI(2017-02) Bray, Joshua A.; Lauchnor, Ellen G.; Redden, George D.; Fujita, Yoshiko; Codd, Sarah L.; Seymour, Joseph D.Precipitation reactions influence transport properties in porous media and can be coupled to advective and dispersive transport. For example, in subsurface environments, mixing of groundwater and injected solutions can induce mineral supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and microcomputed tomography (μ-CT) were employed as complementary techniques to evaluate advection, dispersion, and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through packed glass beads under two relative flow rates with Na2CO3 and CaCl2 in the inner and outer fluids, respectively. CaCO3 became supersaturated and formed a precipitate at the mixing interface between the two solutions. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution μ-CT imaging visualized the precipitate formed in the porous media. Formation of a precipitate minimized dispersive and advective transport between the two fluids and the shape of the precipitation front was influenced by the relative flow rates. This work demonstrates that the combined use of MRI and μ-CT can be highly complementary in the study of reactive transport processes in porous media.Item Inhibition of phenol on the rates of ammonia oxidation by Nitrosomonas europaea grown under batch, continuous fed, and biofilm conditions(2013-09) Lauchnor, Ellen G.; Semprini, LewisAmmonia oxidation by Nitrosomonas europaea, an ammonia oxidizing bacterium prevalent in wastewater treatment, is inhibited in the presence of phenol, due to interaction of the phenol with the ammonia monooxygenase enzyme. Suspended cells of N. europaea were cultured in batch reactors and continuous flow reactors at dilution rates of 0.01–0.2 d−1. The rate of ammonia oxidation in the continuous cultures correlated to the dilution rate in the reactor. The batch and continuous cultures were exposed to 20 μM phenol and ammonia oxidation activity was measured by specific oxygen uptake rates (SOURs). Inhibition of NH3 oxidation by 20 μM phenol ranged from a 77% reduction of SOUR observed with suspended cells harvested during exponential growth, to 26% in biofilms. The extent of inhibition was correlated with ammonia oxidation rates in both suspended and biofilm cells, with greater percent inhibition observed with higher initial rates of NH3 oxidation. In biofilm grown cells, an increase in activity and phenol inhibition were both observed upon dispersing the biofilm cells into fresh, liquid medium. Under higher oxygen tension, an increase in the NO2 production of the biofilms was observed and biofilms were more susceptible to phenol inhibition. Dissolved oxygen microsensor measurements showed oxygen limited conditions existed in the biofilms. The ammonia oxidation rate was much lower in biofilms, which were less inhibited during phenol exposure. The results clearly indicate in both suspended and attached cells of N. europaea that a higher extent of phenol inhibition is positively correlated with a higher rate of NH3 oxidation (enzyme turnover).Item Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media(2016-09) Hommel, Johannes; Lauchnor, Ellen G.; Gerlach, Robin; Cunningham, Alfred B.; Ebigbo, Anozie; Helmig, Rainer; Class, HolgerAttachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. Quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentation, and the difficulties in measuring metabolically active cells attached to porous media. Preliminary experiments confirmed the difficulty associated with measuring active Sporosarcina pasteurii cells attached to porous media. However, attachment is a key process in applications of biofilm-mediated reactions in the subsurface such as microbially induced calcite precipitation. Independent of the exact processes involved, attachment determines both the distribution and the initial amount of attached biomass and as such the initial reaction rate. As direct experimental investigations are difficult, this study is limited to a numerical investigation of the effect of various initial biomass distributions and initial amounts of attached biomass. This is performed for various injection strategies, changing the injection rate as well as alternating between continuous and pulsed injections. The results of this study indicate that, for the selected scenarios, both the initial amount and the distribution of attached biomass have minor influence on the Ca2+2+ precipitation efficiency as well as the distribution of the precipitates compared to the influence of the injection strategy. The influence of the initial biomass distribution on the resulting final distribution of the precipitated calcite is limited, except for the continuous injection at intermediate injection rate. But even for this injection strategy, the Ca2+2+ precipitation efficiency shows no significant dependence on the initial biomass distribution.Item Kinetic parameter estimation in N. europaea biofilms using a 2-D reactive transport model(2015-04) Lauchnor, Ellen G.; Semprini, Lewis; Wood, Brian D.Biofilms of the ammonia oxidizing bacterium Nitrosomonas europaea were cultivated to study microbial processes associated with ammonia oxidation in pure culture. We explored the hypothesis that the kinetic parameters of ammonia oxidation in N. europaea biofilms were in the range of those determined with batch suspended cells. Oxygen and pH microelectrodes were used to measure dissolved oxygen (DO) concentrations and pH above and inside biofilms and reactive transport modeling was performed to simulate the measured DO and pH profiles. A two dimensional (2-D) model was used to simulate advection parallel to the biofilm surface and diffusion through the overlying fluid while reaction and diffusion were simulated in the biofilm. Three experimental studies of microsensor measurements were performed with biofilms: i) NH3 concentrations near the Ksnvalue of 40 μM determined in suspended cell tests ii) Limited buffering capacity which resulted in a pH gradient within the biofilms and iii) NH3 concentrations well below the Ksn value. Very good fits to the DO concentration profiles both in the fluid above and in the biofilms were achieved using the 2-D model. The modeling study revealed that the half-saturation coefficient for NH3 in N. europaea biofilms was close to the value measured in suspended cells. However, the third study of biofilms with low availability of NH3 deviated from the model prediction. The model also predicted shifts in the DO profiles and the gradient in pH that resulted for the case of limited buffering capacity. The results illustrate the importance of incorporating both key transport and chemical processes in a biofilm reactive transport model.Item Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation(2013-01) Phillips, Adrienne J.; Lauchnor, Ellen G.; Eldring, Joseph; Esposito, R.; Mitchell, Andrew C.; Gerlach, Robin; Cunningham, Alfred B.; Spangler, Lee H.Mitigation strategies for sealing high permeability regions in cap rocks, such as fractures or improperly abandoned wells, are important considerations in the long term security of geologically stored carbon dioxide (CO2). Sealing technologies using low-viscosity fluids are advantageous in this context since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. Using aqueous solutions and suspensions that can effectively promote microbially induced mineral precipitation is one such technology. Here we describe a strategy to homogenously distribute biofilm-induced calcium carbonate (CaCO3) precipitates in a 61 cm long sandfilled column and to seal a hydraulically fractured, 74 cm diameter Boyles Sandstone core. Sporosarcina pasteurii biofilms were established and an injection strategy developed to optimize CaCO3 precipitation induced via microbial urea hydrolysis. Over the duration of the experiments, permeability decreased between 2 and 4 orders of magnitude in sand column and fractured core experiments, respectively. Additionally, after fracture sealing, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest biofilm-induced CaCO3 precipitation technologies may potentially seal and strengthen fractures to mitigate CO2 leakage potential.Item A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments(2015-05) Hommel, Johannes; Lauchnor, Ellen G.; Phillips, Adrienne J.; Gerlach, Robin; Cunningham, Alfred B.; Helmig, Rainer; Ebigbo, Anozie; Class, HolgerThe model for microbially induced calcite precipitation (MICP) published by Ebigbo et al. (2012) has been improved based on new insights obtained from experiments and model calibration. The challenge in constructing a predictive model for permeability reduction in the underground with MICP is the quantification of the complex interaction between flow, transport, biofilm growth, and reaction kinetics. New data from Lauchnor et al. (2015) on whole-cell ureolysis kinetics from batch experiments were incorporated into the model, which has allowed for a more precise quantification of the relevant parameters as well as a simplification of the reaction kinetics in the equations of the model. Further, the model has been calibrated objectively by inverse modeling using quasi-1D column experiments and a radial flow experiment. From the postprocessing of the inverse modeling, a comprehensive sensitivity analysis has been performed with focus on the model input parameters that were fitted in the course of the model calibration. It reveals that calcite precipitation and concentrations of inline image and inline image are particularly sensitive to parameters associated with the ureolysis rate and the attachment behavior of biomass. Based on the determined sensitivities and the ranges of values for the estimated parameters in the inversion, it is possible to identify focal areas where further research can have a high impact toward improving the understanding and engineering of MICP.Item Struvite stone formation by ureolytic biofilm infections(2016) Schultz, Logan N.; Connolly, James M.; Lauchnor, Ellen G.; Hobbs, Trace; Gerlach, RobinThis chapter describes how urinary tract infections can lead to stone formation. The most frequent type of infection stone is struvite (MgNH4PO4 · 6H2O), although it is common that struvite stones and infections are associated with other stone types, often forming large staghorn calculi. A complete understanding of struvite stone formation requires knowledge of the pathogen biology, including metabolic activity and motility, as well as a basic understanding of how minerals form.The pathogens responsible for struvite stones are those that break down urea into ammonium (NH4 +) and inorganic carbon. This reaction, known as ureolysis, increases the pH of urine and the concentration of NH4 +, thus increasing the saturation index of struvite. If supersaturation is reached, i.e. the ion activity product (IAP) is greater than the ion activity product at equilibrium (Ksp), struvite stone formation is possible.An important consideration with urinary tract infections is that pathogens often form attached communities, known as biofilms, which help them to survive physical and chemical stresses. Not only are biofilm-related infections more difficult to treat, but they can facilitate stone formation by creating gradients in chemical concentrations near surfaces. Modern laboratory bioreactors and computer models, described in this chapter, are improving our understanding of how and why infection stones such as struvite form. Current treatment options for infection stones can be painful or ineffective. As more is learned about the complex microbe-fluid-mineral interactions, less-invasive treatments and more-effective prevention strategies will be developed.Book title: The Role of Bacteria in Urology Lange D, Chew B, (Eds.): Springer, 2015; pp. 41–49.Item Whole cell kinetics of ureolysis by Sporosarcina pasteurii(2015-06) Lauchnor, Ellen G.; Topp, D. M.; Cunningham, Alfred B.; Gerlach, RobinAims Ureolysis drives microbially induced calcium carbonate precipitation (MICP). MICP models typically employ simplified urea hydrolysis kinetics that do not account for cell density, pH effect or product inhibition. Here, ureolysis rate studies with whole cells of Sporosarcina pasteurii aimed to determine the relationship between ureolysis rate and concentrations of (i) urea, (ii) cells, (iii) and (iv) pH (H+ activity). Methods and Results Batch ureolysis rate experiments were performed with suspended cells of S. pasteurii and one parameter was varied in each set of experiments. A Michaelis–Menten model for urea dependence was fitted to the rate data (R2 = 0·95) using a nonlinear mixed effects statistical model. The resulting half-saturation coefficient, Km, was 305 mmol l−1 and maximum rate constant, Vmax, was 200 mmol l−1 h−1. However, a first-order model with k1 = 0·35 h−1 fit the data better (R2 = 0·99) for urea concentrations up to 330 mmol l−1. Cell concentrations in the range tested (1 × 107–2 × 108 CFU ml−1) were linearly correlated with ureolysis rate (cell dependent = 6·4 × 10−9 mmol CFU−1 h−1). Conclusions Neither pH (6–9) nor ammonium concentrations up to 0·19 mol l−1 had significant effects on the ureolysis rate and are not necessary in kinetic modelling of ureolysis. Thus, we conclude that first-order kinetics with respect to urea and cell concentrations are likely sufficient to describe urea hydrolysis rates at most relevant concentrations. Significance and Impact of the Study These results can be used in simulations of ureolysis driven processes such as microbially induced mineral precipitation and they verify that under the stated conditions, a simplified first-order rate for ureolysis can be employed. The study shows that the kinetic models developed for enzyme kinetics of urease do not apply to whole cells of S. pasteurii.