Browsing by Author "Lister, Nina-Marie"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Integrated adaptive design for wildlife movement under climate change(2015-11) Lister, Nina-Marie; Brocki, Marta; Ament, Robert J.Climate change is anticipated to alter both wildlife movement and distributions. Despite mounting evidence that wildlife-crossing infrastructure offers a reliable, physical solution to the linked problems of wildlife road mortality and habitat fragmentation, pervasive barriers - from economic to governance structures - prevent the widespread introduction of an infrastructure network. To overcome these barriers, and to cope with the challenges posed by climate change, we argue that proactive, anticipatory planning and evidence-based, integrated highway-impact mitigation strategies are needed. Specifically, wildlife-crossing infrastructure should emphasize an integrated and adaptive approach to constructing innovative, modular, and potentially moveable structures that can be transferred from one location to another as monitoring of habitats and wildlife needs indicate. Continued investment in fixed, static structures, which are typically based on engineering standards designed for traffic loads rather than wildlife movement, may prove ineffectual as habitats change in composition and location, potentially leading to associated changes in the locations of wildlife-vehicle collisions.Item The Use of Fiber-Reinforced Polymers in Wildlife Crossing Infrastructure(MDPI, 2020-02) Bell, Matthew; Fick, Damon; Ament, Rob; Lister, Nina-MarieThe proven effectiveness of highway crossing infrastructure to mitigate wildlife-vehicle collisions with large animals has made it a preferred method for increasing motorist and animal safety along road networks around the world. The crossing structures also provide safe passage for small- and medium-sized wildlife. Current methods to build these structures use concrete and steel, which often result in high costs due to the long duration of construction and the heavy machinery required to assemble the materials. Recently, engineers and architects are finding new applications of fiber-reinforced polymer (FRP) composites, due to their high strength-to-weight ratio and low life-cycle costs. This material is better suited to withstand environmental elements and the static and dynamic loads required of wildlife infrastructure. Although carbon and glass fibers along with new synthetic resins are most commonly used, current research suggests an increasing incorporation and use of bio-based and recycled materials. Since FRP bridges are corrosion resistant and hold their structural properties over time, owners of the bridge can benefit by reducing costly and time-consuming maintenance over its lifetime. Adapting FRP bridges for use as wildlife crossing structures can contribute to the long-term goals of improving motorist and passenger safety, conserving wildlife and increasing cost efficiency, while at the same time reducing plastics in landfills.