Browsing by Author "McInnerney, Kathleen"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Bile Salts Affect Expression of Escherichia coli O157:H7 Genes for Virulence and IronAcquisition, and Promote Growth under Iron Limiting Conditions(2013-09) Hamner, Steve; McInnerney, Kathleen; Williamson, Kerry S.; Franklin, Michael J.; Ford, Tim E.Bile salts exhibit potent antibacterial properties, acting as detergents to disrupt cell membranes and as DNA-damaging agents. Although bacteria inhabiting the intestinal tract are able to resist bile’s antimicrobial effects, relatively little is known about how bile influences virulence of enteric pathogens. Escherichia coli O157:H7 is an important pathogen of humans, capable of causing severe diarrhea and more serious sequelae. In this study, the transcriptome response of E. coli O157:H7 to bile was determined. Bile exposure induced significant changes in mRNA levels of genes related to virulence potential, including a reduction of mRNA for the 41 genes making up the locus of enterocyte effacement (LEE) pathogenicity island. Bile treatment had an unusual effect on mRNA levels for the entire flagella-chemotaxis regulon, resulting in two- to four-fold increases in mRNA levels for genes associated with the flagella hook-basal body structure, but a two-fold decrease for “late” flagella genes associated with the flagella filament, stator motor, and chemotaxis. Bile salts also caused increased mRNA levels for seventeen genes associated with iron scavenging and metabolism, and counteracted the inhibitory effect of the iron chelating agent 2,2’-dipyridyl on growth of E. coli O157:H7. These findings suggest that E. coli O157:H7 may use bile as an environmental signal to adapt to changing conditions associated with the small intestine, including adaptation to an iron-scarce environment.Item A Candida albicans early stage biofilm detachment event in rich medium(2009-02) Sellam, Adnane; Al-Niemi, Thamir; McInnerney, Kathleen; Brumfield, Susan; Nantel, Andre; Suci, Peter A.Background: Dispersal from Candida albicans biofilms that colonize catheters is implicated as a primary factor in the link between contaminated catheters and life threatening blood stream infections (BSI). Appropriate in vitro C. albicans biofilm models are needed to probe factors that induce detachment events. Results: Using a flow through system to culture C. albicans biofilms we characterized a detachment process which culminates in dissociation of an entire early stage biofilm from a silicone elastomer surface. We analyzed the transcriptome response at time points that bracketed an abrupt transition in which a strong adhesive association with the surface is weakened in the initial stages of the process, and also compared batch and biofilm cultures at relevant time points. K means analysis of the time course array data revealed categories of genes with similar patterns of expression that were associated with adhesion, biofilm formation and glycoprotein biosynthesis. Compared to batch cultures the biofilm showed a pattern of expression of metabolic genes that was similar to the C. albicans response to hypoxia. However, the loss of strong adhesion was not obviously influenced by either the availability of oxygen in the medium or at the silicone elastomer surface. The detachment phenotype of mutant strains in which selected genes were either deleted or overexpressed was characterized. The microarray data indicated that changes associated with the detachment process were complex and, consistent with this assessment, we were unable to demonstrate that transcriptional regulation of any single gene was essential for loss of the strong adhesive association. Conclusion: The massive dispersal of the early stage biofilm from a biomaterial surface that we observed is not orchestrated at the level of transcriptional regulation in an obvious manner, or is only regulated at this level by a small subpopulation of cells that mediate adhesion to the surface.Item Genotypic and phenotypic variation in Pseudomonas aeruginosa reveals signatures of secondary infection and mutator activity in certain Cystic Fibrosis patients with chronic lung infections(2011-09) Warren, A. E.; Boulianne-Larsen, C. M.; Chandler, C. B.; Chlotti, K.; Kroll, E.; Miller, S. R.; Taddei, F.; Sermet-Gaudelus, I.; Ferroni, A.; McInnerney, Kathleen; Franklin, Michael J.; Rosenzweig, F.Evolutionary adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung is limited by genetic variation, which depends on rates of horizontal gene transfer and mutation supply. Because each may increase following secondary infection or mutator emergence, we sought to ascertain the incidence of secondary infection and genetic variability in populations containing or lacking mutators. Forty-nine strains collected over 3 years from 16 patients were phenotyped for antibiotic resistance and mutator status and were genotyped by repetitive-sequence PCR (rep-PCR), pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). Though phenotypic and genetic polymorphisms were widespread and clustered more strongly within than between longitudinal series, their distribution revealed instances of secondary infection. Sequence data, however, indicated that interlineage recombination predated initial strain isolation. Mutator series were more likely to be multiply antibiotic resistant, but not necessarily more variable in their nucleotide sequences, than nonmutators. One mutator and one nonmutator series were sequenced at mismatch repair loci and analyzed for gene content using DNA microarrays. Both were wild type with respect to mutL, but mutators carried an 8-bp mutS deletion causing a frameshift mutation. Both series lacked 126 genes encoding pilins, siderophores, and virulence factors whose inactivation has been linked to adaptation during chronic infection. Mutators exhibited loss of severalfold more genes having functions related to mobile elements, motility, and attachment. A 105-kb, 86-gene deletion was observed in one nonmutator that resulted in loss of virulence factors related to pyoverdine synthesis and elements of the multidrug efflux regulon. Diminished DNA repair activity may facilitate but not be absolutely required for rapid evolutionary change.Item Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population(2012-02) Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.; Franklin, Michael J.Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state.Item Phevalin (aureusimine B) Production by Staphylococcus aureus Biofilm and Impacts on Human Keratinocyte Gene Expression(2012-07) Secor, Patrick R.; Jennings, Laura K.; James, Garth A.; Kirker, Kelly R.; deLancey Pulcini, Elinor; McInnerney, Kathleen; Gerlach, Robin; Livinghouse, Tom; Hilmer, Jonathan K.; Bothner, Brian; Fleckman, Philip; Olerud, John E.; Stewart, Philip S.Staphylococcus aureus biofilms are associated with chronic skin infections and are orders of magnitude more resistant to antimicrobials and host responses. S. aureus contains conserved nonribosomal peptide synthetases that produce the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively). The biological function of these compounds has been speculated to be involved in virulence factor gene expression in S. aureus, protease inhibition in eukaryotic cells, and interspecies bacterial communication. However, the exact biological role of these compounds is unknown. Here, we report that S. aureus biofilms produce greater amounts of phevalin than their planktonic counterparts. Phevalin had no obvious impact on the extracellular metabolome of S. aureus as measured by high-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. When administered to human keratinocytes, phevalin had a modest effect on gene expression. However, conditioned medium from S. aureus spiked with phevalin amplified differences in keratinocyte gene expression compared to conditioned medium alone. Phevalin may be exploited as potential biomarker and/or therapeutic target for chronic, S. aureus biofilm-based infections.Item Staphylococcus aureus biofilm and planktonic cultures differentially impact gene expression, MAPK phosphorylation, and cytokine production in human keratinocytes(2011-06) Secor, Patrick R.; James, Garth A.; Fleckman, Philip; Olerud, John E.; McInnerney, Kathleen; Stewart, Philip S.Background: Many chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. Staphylococcus aureus is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen.Results: The impact of S. aureus soluble products in biofilm-conditioned medium (BCM) or in planktonicconditioned medium (PCM) on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic S. aureus was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, S. aureus biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms.Conclusions: Collectively the results indicate that S. aureus biofilms induce a distinct inflammatory response compared to their planktonic counterparts. The differential gene expression and production of inflammatory cytokines by biofilm and planktonic cultures in keratinocytes could have implications for the formation and persistence of chronic wounds. The formation of a biofilm should be considered in any study investigating host response to bacteria.