Browsing by Author "Nerem, Robert R."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Genetic networks encode secrets of their past(Elsevier BV, 2022-03) Crawford-Kahrl, Peter; Nerem, Robert R.; Cummins, Bree; Gedeon, TomasResearch shows that gene duplication followed by either repurposing or removal of duplicated genes is an important contributor to evolution of gene and protein interaction networks. We aim to identify which characteristics of a network can arise through this process, and which must have been produced in a different way. To model the network evolution, we postulate vertex duplication and edge deletion as evolutionary operations on graphs. Using the novel concept of an ancestrally distinguished subgraph, we show how features of present-day networks require certain features of their ancestors. In particular, ancestrally distinguished subgraphs cannot be introduced by vertex duplication. Additionally, if vertex duplication and edge deletion are the only evolutionary mechanisms, then a graph’s ancestrally distinguished subgraphs must be contained in all of the graph’s ancestors. We analyze two experimentally derived genetic networks and show that our results accurately predict lack of large ancestrally distinguished subgraphs, despite this feature being statistically improbable in associated random networks. This observation is consistent with the hypothesis that these networks evolved primarily via vertex duplication. The tools we provide open the door for analyzing ancestral networks using current networks. Our results apply to edge-labeled (e.g. signed) graphs which are either undirected or directed.Item Using extremal events to characterize noisy time series(2020-02) Berry, Eric; Cummins, Bree; Nerem, Robert R.; Smith, Lauren M.; Haase, Steven B.; Gedeon, TomasExperimental time series provide an informative window into the underlying dynamical system, and the timing of the extrema of a time series (or its derivative) contains information about its structure. However, the time series often contain significant measurement errors. We describe a method for characterizing a time series for any assumed level of measurement error 𝜀 by a sequence of intervals, each of which is guaranteed to contain an extremum for any function that 𝜀-approximates the time series. Based on the merge tree of a continuous function, we define a new object called the normalized branch decomposition, which allows us to compute intervals for any level 𝜀. We show that there is a well-defined total order on these intervals for a single time series, and that it is naturally extended to a partial order across a collection of time series comprising a dataset. We use the order of the extracted intervals in two applications. First, the partial order describing a single dataset can be used to pattern match against switching model output (Cummins et al. in SIAM J Appl Dyn Syst 17(2):1589–1616, 2018), which allows the rejection of a network model. Second, the comparison between graph distances of the partial orders of different datasets can be used to quantify similarity between biological replicates.