Browsing by Author "Ohman, Dennis E."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed ß-helix(2005-06) Douthit, Stephanie Ann; Dlakic, Mensur; Ohman, Dennis E.; Franklin, Michael J.The polysaccharide alginate forms a protective capsule for Pseudomonas aeruginosa during chronic pulmonary infections. The structure of alginate, a linear polymer of ß1-4-linked O-acetylated D-mannuronate (M) and L-guluronate (G), is important for its activity as a virulence factor. Alginate structure is mediated by AlgG, a periplasmic C-5 mannuronan epimerase. AlgG also plays a role in protecting alginate from degradation by the periplasmic alginate lyase AlgL. Here, we show that the C-terminal region of AlgG contains a right-handed ß-helix (RHßH) fold, characteristic of proteins with the carbohydrate-binding and sugar hydrolase (CASH) domain. When modeled based on pectate lyase C of Erwinia chrysanthemi, the RHßH of AlgG has a long shallow groove that may accommodate alginate, similar to protein/polysaccharide interactions of other CASH domain proteins. The shallow groove contains a 324-DPHD motif that is conserved among AlgG and the extracellular mannuronan epimerases of Azotobacter vinelandii. Point mutations in this motif disrupt mannuronan epimerase activity but have no effect on alginate secretion. The D324A mutation has a dominant negative phenotype, suggesting that the shallow groove in AlgG contains the catalytic face for epimerization. Other conserved motifs of the epimerases, 361-NNRSYEN and 381-NLVAYN, are predicted to lie on the opposite side of the RHßH from the catalytic center. Point mutations N362A, N367A, and V383A result in proteins that do not protect alginate from AlgL, suggesting that these mutant proteins are not properly folded or not inserted into the alginate biosynthetic scaffold. These motifs are likely involved in asparagine and hydrophobic stacking, required for structural integrity of RHßH proteins, rather than for mannuronan catalysis. The results suggest that the AlgG RHßH protects alginate from degradation by AlgL by channeling the alginate polymer through the proposed alginate biosynthetic scaffold while epimerizing approximately every second D-mannuronate residue to L-guluronate along the epimerase catalytic face.Item Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa(2002-06) Ohman, Dennis E.Alginate is an extracellular polysaccharide produced by mucoid strains of Pseudomonas aeruginosa that are typically isolated from the pulmonary tract of chronically infected cystic fibrosis patients. Alginate is a linear polymer of D-mannuronate and L-guluronate with O-acetyl ester linkages on the O-2 and/or O-3 positions of the mannuronate residues. The presence of O-acetyl groups plays an important role in the ability of the polymer to act as a virulence factor, and the algF, algJ, and algI genes are known to be essential for the addition of O-acetyl groups to alginate. To better understand the mechanism of alginate O acetylation, the cellular locations of the AlgI, AlgJ, and AlgF proteins were determined. For these studies, defined nonpolar deletions of algI, algJ, and algF were constructed in the FRD1 strain background, and each mutant produced alginate lacking O-acetyl groups. Expression of algI, algJ, or algF in trans in the corresponding mutant complemented each O acetylation defect. Random phoA (alkaline phosphatase) fusions were constructed in algF, algJ, and algI. All in-frame fusions to algF and algJ had AP activity, indicating that both AlgF and AlgJ were exported to the periplasm. Immunoblot analysis of spheroplasts and periplasmic fractions showed that AlgF was released with the periplasmic contents, but AlgJ remained with the spheroplast fraction. An N-terminal sequence analysis of AlgJ showed that its putative AlgJ signal peptide was not cleaved, suggesting that AlgJ is anchored to the cytoplasmic membrane by its uncleaved signal peptide. AP fusions were also used to map the membrane topology of AlgI, which suggest that it is an integral membrane protein with seven transmembrane domains. These results suggest that AlgI-AlgJ-AlgF may form a complex in the membrane that is the reaction center for O acetylation of alginate.Item Role of alginate and alginate O-acetylation in the formation of Pseudomonas aeruginosa microcolonies and biofilms(2001-02) Nivens, David E.; Ohman, Dennis E.; Williams, Jessica; Franklin, Michael J.Attenuated total reflection/Fourier transform-infrared spectrometry (ATR/FT-IR) and scanning confocal laser microscopy (SCLM) were used to study the role of alginate and alginate structure in the attachment and growth of Pseudomonas aeruginosa on surfaces. Developing biofilms of the mucoid (alginate-producing) cystic fibrosis pulmonary isolate FRD1, as well as mucoid and nonmucoid mutant strains, were monitored by ATR/FT-IR for 44 and 88 h as IR absorbance bands in the region of 2,000 to 1,000 cm−1. All strains produced biofilms that absorbed IR radiation near 1,650 cm−1 (amide I), 1,550 cm−1 (amide II), 1,240 cm−1 (PO stretching, C—O—C stretching, and/or amide III vibrations), 1,100 to 1,000 cm−1(C—OH and P—O stretching) 1,450 cm−1, and 1,400 cm−1. The FRD1 biofilms produced spectra with an increase in relative absorbance at 1,060 cm−1 (C—OH stretching of alginate) and 1,250 cm−1 (C—O stretching of the O-acetyl group in alginate), as compared to biofilms of nonmucoid mutant strains. Dehydration of an 88-h FRD1 biofilm revealed other IR bands that were also found in the spectrum of purified FRD1 alginate. These results provide evidence that alginate was present within the FRD1 biofilms and at greater relative concentrations at depths exceeding 1 μm, the analysis range for the ATR/FT-IR technique. After 88 h, biofilms of the nonmucoid strains produced amide II absorbances that were six to eight times as intense as those of the mucoid FRD1 parent strain. However, the cell densities in biofilms were similar, suggesting that FRD1 formed biofilms with most cells at depths that exceeded the analysis range of the ATR/FT-IR technique. SCLM analysis confirmed this result, demonstrating that nonmucoid strains formed densely packed biofilms that were generally less than 6 μm in depth. In contrast, FRD1 produced microcolonies that were approximately 40 μm in depth. An algJ mutant strain that produced alginate lacking O-acetyl groups gave an amide II signal approximately fivefold weaker than that of FRD1 and produced small microcolonies. After 44 h, the algJ mutant switched to the nonmucoid phenotype and formed uniform biofilms, similar to biofilms produced by the nonmucoid strains. These results demonstrate that alginate, although not required for P. aeruginosa biofilm development, plays a role in the biofilm structure and may act as intercellular material, required for formation of thicker three-dimensional biofilms. The results also demonstrate the importance of alginate O acetylation in P. aeruginosabiofilm architecture.Item Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis(2001-03) Pier, Gerald B.; Coleman, Fadie; Grout, Martha; Franklin, Michael J.; Ohman, Dennis E.Establishment and maintenance of chronic lung infections with mucoid Pseudomonas aeruginosa in patients with cystic fibrosis (CF) require that the bacteria avoid host defenses. Elaboration of the extracellular, O-acetylated mucoid exopolysaccharide, or alginate, is a major microbial factor in resistance to immune effectors. Here we show that O acetylation of alginate maximizes the resistance of mucoid P. aeruginosa to antibody-independent opsonic killing and is the molecular basis for the resistance of mucoid P. aeruginosa to normally nonopsonic but alginate-specific antibodies found in normal human sera and sera of infected CF patients. O acetylation of alginate appears to be critical for P. aeruginosaresistance to host immune effectors in CF patients.