Browsing by Author "Pennington, R. Toby"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability(2015-11) Pennington, R. Toby; Lavin, MatthewA fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation.Item Dispersal assembly of rain forest tree communities across the Amazon basin(2017-03) Dexter, Kyle G.; Lavin, Matthew; Torke, Benjamin M.; Twyford, Alex D.; Kursar, Thomas A.; Coley, Phyllis D.; Drake, Camila; Hollands, Ruth; Pennington, R. TobyWe investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga. We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia, Protieae, and Guatteria. Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.Item Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest(2017-07) Pennington, R. Toby; Lavin, MatthewThe Andes are the world's longest mountain chain, and the tropical Andes are the world\'s richest biodiversity hot spot. The origin of the tropical Andean cordillera is relatively recent because the elevation of the mountains was relatively low (400-2500 m palaeoelevations) only 10 MYA with final uplift being rapid. These final phases of the Andean orogeny are thought to have had a fundamental role in shaping processes of biotic diversification and biogeography, with these effects reaching far from the mountains themselves by changing the course of rivers and deposition of mineral-rich Andean sediments across the massive Amazon basin. In a recent issue of Molecular Ecology, Oswald, Overcast, Mauck, Andersen, and Smith (2017) investigate the biogeography and diversification of bird species in the Andes of Peru and Ecuador. Their study is novel in its focus on tropical dry forests (Figure 1) rather than more mesic biomes such as rain forests, cloud forests and paramos, which tend to be the focus of science and conservation in the Andean hot spot. It is also able to draw powerful conclusions via the first deployment of genomic approaches to a biogeographic question in the threatened dry forests of the New World.