Browsing by Author "Perkins, Steve W."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Geosynthetic Subgrade Stabilization - Field Testing and Design Method Calibration(2017-03) Cuelho, Eli V.; Perkins, Steve W.Geogrids and geotextiles are used routinely to stabilize weak subgrade soils during road construction. Typical subgrade stabilization applications are temporary haul roads or unpaved low-volume roads, but can also include paved roads built on poorer foundation materials. Full-scale test sections were constructed, trafficked and monitored to compare the relative operational performance of geosynthetics used as subgrade stabilization, as well as determine which material properties were most related to performance. Unpaved test sections were constructed using twelve geosynthetics consisting of a variety of geogrids and geotextiles. Multiple control test sections were also built to evaluate the effect that subgrade strength, base course thickness, and/or presence of the geosynthetic had on performance. Even though the geotextile materials used during this study showed good performance as subgrade stabilization, material properties associated with their performance was difficult to establish due to the limited number of test sections and lack of relevant tests to properly characterize these types of materials for this application. Using longitudinal rut as the primary indicator of performance, it was determined through a linear regression analysis that the stiffness of the geogrid junctions in the cross-machine direction correlated best with performance in this application and under these conditions. Using this knowledge, the design equation associated with the Giroud-Han method was calibrated to make geogrid junction stiffness in the cross-machine direction the primary property of the geosynthetic, thereby replacing geogrid aperture stability modulus. The calibration and verification of this method is described herein.Item Use of Finite Difference Numerical Technique to Evaluate Deep Patch Embankment Repair with Geosynthetics(2015-03) Perkins, Steve W.; Cuelho, Eli V.; Akin, Michelle; Collins, BrianLow-volume roads constructed in steep hillside terrain by cut and cast techniques may experience instability in the form of excessive subsidence that leads to large cracks and differential movement along the roadway bench. The technique of deep patch embankment repair with geosynthetics (DPERG) has been employed in the western United States; DPERG generally involves a 1- to 2-m-deep excavation that is backfilled with compacted granular soils and one or more layers of geosynthetic reinforcement. The design goal of a DPERG is not necessarily to eliminate future slope movement but to confine potential failure surfaces to a region of the slope well below the roadway bench and extending out to the slope face such that a failure surface does not extend up onto the roadway bench. This design results in movement along the roadway bench that is more uniform and less disruptive to traffic. This paper describes the results of a study to evaluate the DPERG technique by analytical methods supported by field observations for the purpose of determining the required depth of the DPERG and the optimum layer spacing of the reinforcement. The study showed that for a given slope geometry and set of soil properties that had led to failure in an unreinforced slope, there were several combinations of DPERG depth and number of reinforcement layers that satisfied the design goal. The study showed that more tightly spaced reinforcement layers were beneficial and that for widely spaced layers, the design goal of a DPERG could not be met, even for a thick DPERG depth.