Browsing by Author "Raza, Sajid"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item A Novel Network Screening Methodology for Rural Low-Volume Roads(Scientific Research Publishing, Inc., 2023-01) Al-Kaisy, Ahmed; Raza, SajidLow-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges for highway agencies including those related to safety management on the highway network. Specifically, traditional network screening methods using crash history can be effective in screening rural highways with higher traffic volumes and more frequent crashes. However, these traditional methods are often ineffective in screening LVR networks due to low traffic volumes and the sporadic nature of crash occurrence. Further, many of the LVRs are owned and operated by local agencies that may lack access to detailed crash, traffic and roadway data and the technical expertise within their staff. Therefore, there is a need for more efficient and practical network screening approaches to facilitate safety management programs on these roads. This study proposes one such approach which utilizes a heuristic scoring scheme in assessing the level of risk/safety for the purpose of network screening. The proposed scheme is developed based on the principles of US Highway Safety Manual (HSM) analysis procedures for rural highways and the fundamentals in safety science. The primary application of the proposed scheme is for ranking sites in network screening applications or for comparing multiple improvement alternatives at a specific site. The proposed approach does not require access to detailed databases, technical expertise, or exact information, making it an invaluable tool for small agencies and local governments (e.g. counties, townships, tribal governments, etc.).Item Analyze Business Models for Implementation and Operation of a Statewide GNSSRTN(Montana Department of Transportation (SPR), 2022-10) Al-Kaisy, Ahmed; Teixeira, Rafael; Raza, Sajid; Meyer, BenjaminThe Global Navigation Satellite System (GNSS), commonly known as the global positioning system, has become one of the fastest growing emerging technologies delivering location services to various sectors. The applications of geospatial data span every sphere of modern-day science and industry where geographical positioning matters. The list includes navigation, agriculture, surveying, construction, transportation, forestry, mining, and many others. The accuracy and precision of geospatial data using the GNSS Real-Time Network (RTN) technology enable advanced applications in many fields where geospatial data is used; and open the doors for new applications such as the emerging autonomous systems in transportation, mining, and agriculture. This research project is intended to provide information that would help the state’s efforts in the planning and implementation of the Montana GNSS-RTN system. Four major tasks were completed for this project, namely; state-of-the-art review, state-of-the-practice assessment, characterizing Montana existing GNSS-RTN infrastructure, and identifying and cataloging viable business models for statewide GNSS-RTN systems.Item GNSS-RTN Role in Transportation Applications: An Outlook(American Society of Civil Engineers, 2022-08) Raza, Sajid; Al-Kaisy, Ahmed; Teixeira, Rafael; Meyer, BenjaminGeospatial location service is not only used in measuring ground distances and mapping topography, but has also become vital in many other fields such as aerospace, aviation, natural disaster management, and agriculture, to name but a few. The innovative and multi-disciplinary applications of geospatial data drive technological advancement toward precise and accurate location services available in real-time. Although the RTN technology is currently utilized in a few industries such as precision farming, construction industry, and land survey, the implications of precise real-time location services would be far-reaching and critical to many advanced transportation applications. The GNSS real-time network (RTN) technology, introduced in the mid-1990s, is promising in meeting the needs of automation in most of the advanced transportation applications. This article presents an overview of the GNSS-RTN technology, its current applications in transportation-related fields, and a perspective on the future use of this technology in advanced transportation applications.Item High-Level Assessment ofStatewide GNSS-RTN Business Models(2023-06) Al-Kaisy, Ahmed; Raza, SajidThe applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry where geographical positioning matters. Among all other fields, geospatial technology plays a remarkable role in the transportation sector and has the potential to play an even more critical role in future autonomous transportation systems. In this regard, the GNSS-Real-Time Network (GNSS-RTN) technology is promising in meeting the needs of automation in most advanced transportation applications. The GNSS-RTN is a satellite-based positioning system that uses a network of reference stations to provide centimeter-level accuracy in positioning data in real-time. The technical aspect and working technology of GNSS-RTN are widely studied, however, only limited research has been conducted on the various GNSS-RTN business models currently in use nationally and internationally. Therefore, this study aims at assessing the various GNSS-RTN business models currently used in practice as well as those that are deemed potentially viable but have not yet moved to practice. Eight different business models were cataloged and used in the current assessment. All business models were assessed using three criteria: state control, sustainability, and state/agency costs. The findings of this research are important in helping state agencies make informed decisions as they build, expand or manage their own GNSS-RTN systems.Item Influence Area at Signalized and Stop-Control Intersections: Operational Analysis(SAGE Publications, 2023-02) Raza, Sajid; Al-Kaisy, Ahmed; Washburn, Scott; Barrios, Jorge; Moreno, Ana Tsui; Schroeder, BastianUnderstanding the influence of intersections on operating conditions along connecting roadway segments is important for the analysis of highway facilities and corridors. This study aims at assessing the influence area at signalized and stop-control intersections along rural corridors. The study used speed as a performance measure in examining the spatial extent of operational effects at intersections. High-fidelity connected vehicle (CV) trajectory data, collected at 11 different sites in Florida, was used in this study. The CV trajectory data consists of individual waypoints that included timestamps and location coordinates along with other attributes. Drivers’ speed profiles while driving through the intersection were established and analyzed to determine the length of upstream and downstream influence areas. Quantile regression models were developed to estimate the 50th, 70th, and 85th percentiles of upstream and downstream influence areas separately for signalized and stop-control intersections. Study results indicate that the upstream influence area is longer for a signalized intersection than for a stop-control intersection for comparable segment running speeds. Further, the downstream influence area is significantly longer than the upstream influence area at signalized intersections, and this was consistent at all study sites. Traffic flow level did not have a significant effect on the upstream or downstream influence area; however, midblock running speed, percent heavy vehicles, and facility type (multilane versus two-lane) were found to significantly affect the upstream and downstream influence areas at signalized intersections.Item The Role of GNSS-RTN in Transportation Applications(MDPI AG, 2022-07) Raza, Sajid; Al-Kaisy, Ahmed; Teixeira, Rafael; Meyer, BenjaminThe Global Navigation Satellite System—Real-Time Network (GNSS-RTN) is a satellite-based positioning system using a network of ground receivers (also called continuously operating reference stations (CORSs)) and a central processing center that provides highly accurate location services to the users in real-time over a broader geographic region. Such systems can provide geospatial location data with centimeter-level accuracy anywhere within the network. Geospatial location services are not only used in measuring ground distances and mapping topography; they have also become vital in many other fields such as aerospace, aviation, natural disaster management, and agriculture, to name but a few. The innovative and multi-disciplinary applications of geospatial data drive technological advancement towards precise and accurate location services available in real-time. Although GNSS-RTN technology is currently utilized in a few industries such as precision farming, construction industry, and land surveying, the implications of precise real-time location services would be far-reaching and more critical to many advanced transportation applications. The GNSS-RTN technology is promising in meeting the needs of automation in most advanced transportation applications. This article presents an overview of the GNSS-RTN technology, its current applications in transportation-related fields, and a perspective on the future use of this technology in advanced transportation applications.Item Statewide GNSS-RTN Systems: Current Practices(Scientific Research Publishing, Inc., 2023-01) Raza, Sajid; Al-Kaisy, AhmedThe applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-time led to the development of the Global Navigation Satellite System—Real-Time Network (GNSS-RTN). While there is numerous published information on the technical aspects of the GNSS-RTN technology, information on the best practices or guidelines in building, operating, and managing the GNSS-RTN networks is lacking in practice. To better understand the current practice in establishing and operating the GNSS-RTN systems, an online questionnaire survey was sent to the GNSS-RTN system owners/operators across the U.S. Additionally, a thorough review of available literature on business models and interviews with representatives of two major manufacturers/vendors of GNSS-RTN products and services were conducted. Study results revealed a great deal of inconsistency in current practices among states in the way the GNSS-RTN systems are built, operated, and managed. Aspects of the diversity in state practices involved the business models for the GNSS-RTN systems besides the technical attributes of the network and system products. The information gathered in this study is important in helping state agencies make informed decisions as they build, expand or manage their own GNSS-RTN systems.Item Statewide GNSS-RTN Systems: Current Practices(Scientific Research Publishing, Inc., 2023-01) Raza, Sajid; Al-Kaisy, AhmedThe applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-time led to the development of the Global Navigation Satellite System—Real-Time Network (GNSS-RTN). While there is numerous published information on the technical aspects of the GNSS-RTN technology, information on the best practices or guidelines in building, operating, and managing the GNSS-RTN networks is lacking in practice. To better understand the current practice in establishing and operating the GNSS-RTN systems, an online questionnaire survey was sent to the GNSS-RTN system owners/operators across the U.S. Additionally, a thorough review of available literature on business models and interviews with representatives of two major manufacturers/vendors of GNSS-RTN products and services were conducted. Study results revealed a great deal of inconsistency in current practices among states in the way the GNSS-RTN systems are built, operated, and managed. Aspects of the diversity in state practices involved the business models for the GNSS-RTN systems besides the technical attributes of the network and system products. The information gathered in this study is important in helping state agencies make informed decisions as they build, expand or manage their own GNSS-RTN systems.Item Statewide GNSS-RTN Systems: Current Practices(Scientific Research Publishing, Inc., 2023-01) Raza, Sajid; Al-Kaisy, AhmedThe applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-time led to the development of the Global Navigation Satellite System—Real-Time Network (GNSS-RTN). While there is numerous published information on the technical aspects of the GNSS-RTN technology, information on the best practices or guidelines in building, operating, and managing the GNSS-RTN networks is lacking in practice. To better understand the current practice in establishing and operating the GNSS-RTN systems, an online questionnaire survey was sent to the GNSS-RTN system owners/operators across the U.S. Additionally, a thorough review of available literature on business models and interviews with representatives of two major manufacturers/vendors of GNSS-RTN products and services were conducted. Study results revealed a great deal of inconsistency in current practices among states in the way the GNSS-RTN systems are built, operated, and managed. Aspects of the diversity in state practices involved the business models for the GNSS-RTN systems besides the technical attributes of the network and system products. The information gathered in this study is important in helping state agencies make informed decisions as they build, expand or manage their own GNSS-RTN systems.Item The Role of GNSS-RTN in Transportation Applications(MDPI AG, 2022-07) Raza, Sajid; Al-Kaisy, Ahmed; Teixeira, Rafael; Meyer, BenjaminThe Global Navigation Satellite System—Real-Time Network (GNSS-RTN) is a satellite-based positioning system using a network of ground receivers (also called continuously operating reference stations (CORSs)) and a central processing center that provides highly accurate location services to the users in real-time over a broader geographic region. Such systems can provide geospatial location data with centimeter-level accuracy anywhere within the network. Geospatial location services are not only used in measuring ground distances and mapping topography; they have also become vital in many other fields such as aerospace, aviation, natural disaster management, and agriculture, to name but a few. The innovative and multi-disciplinary applications of geospatial data drive technological advancement towards precise and accurate location services available in real-time. Although GNSS-RTN technology is currently utilized in a few industries such as precision farming, construction industry, and land surveying, the implications of precise real-time location services would be far-reaching and more critical to many advanced transportation applications. The GNSS-RTN technology is promising in meeting the needs of automation in most advanced transportation applications. This article presents an overview of the GNSS-RTN technology, its current applications in transportation-related fields, and a perspective on the future use of this technology in advanced transportation applications.Item Transportation Research Record: Journal of the Transportation Research Board(SAGE Publications, 2023-02) Raza, Sajid; Al-Kaisy, Ahmed; Washburn, Scott; Barrios, Jorge; Tsui Moreno, Ana; Schroeder, BastianUnderstanding the influence of intersections on operating conditions along connecting roadway segments is important for the analysis of highway facilities and corridors. This study aims at assessing the influence area at signalized and stop-control intersections along rural corridors. The study used speed as a performance measure in examining the spatial extent of operational effects at intersections. High-fidelity connected vehicle (CV) trajectory data, collected at 11 different sites in Florida, was used in this study. The CV trajectory data consists of individual waypoints that included timestamps and location coordinates along with other attributes. Drivers’ speed profiles while driving through the intersection were established and analyzed to determine the length of upstream and downstream influence areas. Quantile regression models were developed to estimate the 50th, 70th, and 85th percentiles of upstream and downstream influence areas separately for signalized and stop-control intersections. Study results indicate that the upstream influence area is longer for a signalized intersection than for a stop-control intersection for comparable segment running speeds. Further, the downstream influence area is significantly longer than the upstream influence area at signalized intersections, and this was consistent at all study sites. Traffic flow level did not have a significant effect on the upstream or downstream influence area; however, midblock running speed, percent heavy vehicles, and facility type (multilane versus two-lane) were found to significantly affect the upstream and downstream influence areas at signalized intersections.