Browsing by Author "Rizzi, Romeo"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Safety in multi-assembly via paths appearing in all path covers of a DAG(Institute of Electrical and Electronics Engineers, 2021-01) Caceres, Manuel; Mumey, Brendan; Husic, Edin; Rizzi, Romeo; Cairo, Massimo; Sahlin, Kristoffer; Tomescu, Alexandru I. IoanA multi-assembly problem asks to reconstruct multiple genomic sequences from mixed reads sequenced from all of them. Standard formulations of such problems model a solution as a path cover in a directed acyclic graph, namely a set of paths that together cover all vertices of the graph. Since multi-assembly problems admit multiple solutions in practice, we consider an approach commonly used in standard genome assembly: output only partial solutions (contigs, or safe paths), that appear in all path cover solutions. We study constrained path covers, a restriction on the path cover solution that incorporate practical constraints arising in multi-assembly problems. We give efficient algorithms finding all maximal safe paths for constrained path covers. We compute the safe paths of splicing graphs constructed from transcript annotations of different species. Our algorithms run in less than 15 seconds per species and report RNA contigs that are over 99% precise and are up to 8 times longer than unitigs. Moreover, RNA contigs cover over 70% of the transcripts and their coding sequences in most cases. With their increased length to unitigs, high precision, and fast construction time, maximal safe paths can provide a better base set of sequences for transcript assembly programs.Item Width Helps and Hinders Splitting Flows(Association for Computing Machinery, 2024-01) Cáceres, Manuel; Cairo, Massimo; Grigorjew, Andreas; Khan, Shahbaz; Mumey, Brendan; Rizzi, Romeo; Tomescu, Alexandru I.; Williams, LuciaMinimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow/circulation X on a directed graph G into weighted source-to-sink paths whose weighted sum equals X. We show that, for acyclic graphs, considering the width of the graph (the minimum number of paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the version of the problem that uses only non-negative weights, we identify and characterise a new class of width-stable graphs, for which a popular heuristic is a O(log Val (X))-approximation (Val(X) being the total flow of X), and strengthen its worst-case approximation ratio from Ω(m−−√) to Ω (m/log m) for sparse graphs, where m is the number of edges in the graph. We also study a new problem on graphs with cycles, Minimum Cost Circulation Decomposition (MCCD), and show that it generalises MFD through a simple reduction. For the version allowing also negative weights, we give a (⌈ log ‖ X ‖ ⌉ +1)-approximation (‖ X ‖ being the maximum absolute value of X on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary circulations (‖ X ‖ ≤ 1), using a generalised notion of width for this problem. Finally, we disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.