Browsing by Author "Rollins, MaryClare F."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity(2018-08) Borges, Adair L.; Zhang, Jenny Y.; Rollins, MaryClare F.; Osuna, Beatriz A.; Wiedenheft, Blake A.; Bondy-Denomy, JosephBacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.Item Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity(2017-04) Rollins, MaryClare F.; Chowdhury, Saikat; Carter, Joshua; Golden, Sarah M.; Wilkinson, Royce A.; Bondy-Denomy, Joseph; Lander, Gabriel C.; Wiedenheft, Blake A.The type I-F CRISPR adaptive immune system in Pseudomonas aeruginosa (PA14) consists of two CRISPR loci and six CRISPR-associated (cas) genes. Type I-F systems rely on a CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease (i.e., Cas2/3) for target degradation. In most type I systems, Cas2 and Cas3 are separate proteins involved in adaptation and interference, respectively. However, in I-F systems, these proteins are fused into a single polypeptide. Here we use biochemical and structural methods to show that two molecules of Cas2/3 assemble with four molecules of Cas1 (Cas2/32:Cas14) into a four-lobed propeller-shaped structure, where the two Cas2 domains form a central hub (twofold axis of symmetry) flanked by two Cas1 lobes and two Cas3 lobes. We show that the Cas1 subunits repress Cas2/3 nuclease activity and that foreign DNA recognition by the Csy complex activates Cas2/3, resulting in bidirectional degradation of DNA targets. Collectively, this work provides a structure of the Cas1–2/3 complex and explains how Cas1 and the target-bound Csy complex play opposing roles in the regulation of Cas2/3 nuclease activity.Item Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes(2009-07) Suvorova, Elena S.; Lucas, Olivier; Weisend, Carla M.; Rollins, MaryClare F.; Merrill, Gary F.; Capecchi, Mario R.; Schmidt, Edward E."Background Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Principal Findings Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Txnrd1-deficient livers exhibited a transcriptome response in which 56 mRNAs were induced and 12 were repressed. Based on the global hybridization profile, this represented only 0.3% of the liver transcriptome. Since most liver mRNAs were unaffected, compensatory responses were evidently effective. Nuclear pre-mRNA levels indicated the response was transcriptional. Twenty-one of the induced genes contained known antioxidant response elements (AREs), which are binding sites for the oxidative and chemical stress-induced transcription factor Nrf2. Txnrd1-deficient livers showed increased accumulation of nuclear Nrf2 protein and chromatin immunoprecipitation on the endogenous nqo1 and aox1 promoters in fibroblasts indicated that Txnrd1 ablation triggered in vivo assembly of Nrf2 on each. Conclusions Chronic deletion of Txnrd1 results in induction of the Nrf2 pathway, which contributes to an effective compensatory response."Item Hepatocytes lacking thioredoxin reductase 1 have normal replicative potential during development and regeneration(2010-07) Rollins, MaryClare F.; van der Heide, Dana M.; Weisend, Carla M.; Kundert, Jean A.; Comstock, Kristin M.; Suvorova, Elena S.; Capecchi, Mario R.; Merrill, Gary F.; Schmidt, Edward E.Cells require ribonucleotide reductase (RNR) activity for DNA replication. In bacteria, electrons can flow from NADPH to RNR by either a thioredoxin-reductase- or a glutathione-reductase-dependent route. Yeast and plants artificially lacking thioredoxin reductases exhibit a slow-growth phenotype, suggesting glutathione-reductase-dependent routes are poor at supporting DNA replication in these organisms. We have studied proliferation of thioredoxin-reductase-1 (Txnrd1)-deficient hepatocytes in mice. During development and regeneration, normal mice and mice having Txnrd1-deficient hepatocytes exhibited similar liver growth rates. Proportions of hepatocytes that immunostained for PCNA, phosphohistone H3 or incorporated BrdU were also similar, indicating livers of either genotype had similar levels of proliferative, S and M phase hepatocytes, respectively. Replication was blocked by hydroxyurea, confirming that RNR activity was required by Txnrd1-deficient hepatocytes. Regenerative thymidine incorporation was similar in normal and Txnrd1-deficient livers, further indicating that DNA synthesis was unaffected. Using genetic chimeras in which a fluorescently marked subset of hepatocytes was Txnrd1-deficient while others were not, we found that the multigenerational contributions of both hepatocyte types to development and to liver regeneration were indistinguishable. We conclude that, in mouse hepatocytes, a Txnrd1-independent route for the supply of electrons to RNR can fully support DNA replication and normal proliferative growth.Item Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa(2015-02) Rollins, MaryClare F.; Schuman, Jason T.; Paulus, Kirra; Bukhari, Habib S. T.; Wiedenheft, Blake A.The Type I-F CRISPR-mediated (clustered regularly interspaced short palindromic repeats) adaptive immune system in Pseudomonas aeruginosa consists of two CRISPR loci and six CRISPR-associated (cas) genes. Foreign DNA surveillance is performed by a complex of Cas proteins (Csy1–4) that assemble with a CRISPR RNA (crRNA) into a 350-kDa ribonucleoprotein called the Csy complex. Here, we show that foreign nucleic acid recognition by the Csy complex proceeds through sequential steps, initiated by detection of two consecutive guanine–cytosine base pairs (G–C/G–C) located adjacent to the complementary DNA target. We show that this motif, called the PAM (protospacer adjacent motif), must be double-stranded and that single-stranded PAMs do not provide significant discriminating power. Binding assays performed with G–C/G–C-rich competitor sequences indicate that the Csy complex interacts directly with this dinucleotide motif, and kinetic analyses reveal that recognition of a G–C/G–C motif is a prerequisite for crRNA-guided binding to a target sequence. Together, these data indicate that the Csy complex first interacts with G–C/G–C base pairs and then samples adjacent target sequences for complementarity to the crRNA guide.Item Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex(2017-03) Chowdhury, Saikat; Carter, Joshua; Rollins, MaryClare F.; Jackson, Ryan N.; Hoffmann, Connor; Nosaka, Lyn’Al; Bondy-Denomy, Joseph; Maxwell, Karen L.; Davidson, Alan R.; Fischer, Elizabeth R.; Lander, Gabriel C.; Wiedenheft, Blake A.Genetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR-mediated adaptive immune systems for protection from viral infection, and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here, we report the cryo-electron microscopy (cryo-EM) structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 Å. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.