Browsing by Author "Schroff, Sean R."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Maladaptive nest-site selection by a sagebrush dependent species in a grazing-modified landscape(2019-04) Cutting, Kyle A.; Rotella, Jay J.; Schroff, Sean R.; Frisina, Michael R.; Waxe, James A.; Nunlist, Erika; Sowell, Bok F.Animals are expected to select habitats that maximize their fitness over evolutionary time scales. Yet in human-modified landscapes, habitat selection might not always lead to increased fitness because animals undervalue high-quality resources that appear less attractive than those of lower quality. In the American West, agriculture has modified landscapes, yet little is known about whether agricultural changes alter the reliability of the cues animals use to identify habitat quality; ultimately forming maladaptive breeding strategies where behavioral cues are mismatched with survival outcomes. Using the greater sage-grouse, a species highly dependent upon sagebrush landscapes, we (1) evaluated how females select nesting habitats based on sagebrush type, along with livestock grazing related linear and point features, and other biotic, abiotic characteristics, given hypothesized influences on hiding cover, microclimate and predator travel routes and perches, (2) compared habitat selection information with results for nest survival estimates to evaluate if selection appears to be adaptive or not, and (3) used our results to evaluate the most appropriate strategies for this species in a grazing-modified landscape. Nest-site selection for sagebrush type appears to be maladaptive: in the most-preferred sagebrush type, nest survival rate was one-fourth the rate realized by females nesting in the sagebrush type avoided. Nest survival was four times higher for nests placed away from (>100 m), rather than next to (1 m), the nearest fence, and survival was lower within sites with higher cow pie density (a proxy for previous grazing intensity). Live and dead grasses influenced selection and survival in opposing ways such that dead grass was selected for but resulted in reduced survival while live grass was avoided but resulted in increased survival. Results collectively provide the first empirical evidence that a specific type of sagebrush acts as an ecological trap while another sagebrush type is undervalued. These results also suggest that adding more fences to control livestock grazing systems will likely reduce sage-grouse nest survival.Item Niche shifts and energetic condition of songbirds in response to phenology of food-resource availability in a high-elevation sagebrush ecosystem(2016-06) Cutting, Kyle A.; Anderson, Michelle L.; Beever, Erik A.; Schroff, Sean R.; Klaphake, Eric; Korb, Nathan; McWilliams, ScottSeasonal fluctuations in food availability can affect diets of consumers, which in turn may influence the physiological state of individuals and shape intra- and inter-specific patterns of resource use. High-elevation ecosystems often exhibit a pronounced seasonal “pulse” in productivity, although few studies document how resource use and energetic condition by avian consumers change in relation to food-resource availability in these ecosystems. We tested the hypothesis that seasonal increases (pulses) in food resources in high-elevation sagebrush ecosystems result in 2 changes after the pulse, relative to the before-pulse period: (1) reduced diet breadth of, and overlap between, 2 sympatric sparrow species; and (2) enhanced energetic condition in both species. We tracked breeding-season diets using stable isotopes and energetic condition using plasma metabolites of Brewer's Sparrows (Spizella breweri), Vesper Sparrows (Pooecetes gramineus), and their food resources during 2011, and of only Brewer's Sparrows and their food resources during 2013. We quantify diet breadth and overlap between both species, along with coincident physiological consequences of temporal changes in resource use. After invertebrate biomass increased following periods of rainfall in 2011, dietary breadth decreased by 35% in Brewer's Sparrows and by 48% in Vesper Sparrows, while dietary overlap decreased by 88%. Energetic condition of both species increased when dietary overlap was lower and diet breadth decreased, after the rapid rise of food-resource availability. However, energetic condition of Brewer's Sparrows remained constant in 2013, a year with low precipitation and lack of a strong pulse in food resources, even though the species' dietary breadth again decreased that year. Our results indicate that diet breadth and overlap in these sparrow species inhabiting sagebrush ecosystems generally varied as predicted in relation to intra- and interannual changes in food resources, and this difference in diet was associated with improved energetic condition of sparrows at least in one year.