Browsing by Author "Schuster, Stephan C."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi)(2014-09) Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Schuster, Stephan C.; Bryant, Donald A.; Ward, David M.The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons.Item Draft genome sequence of a sulfide-oxidizing, autotrophic filamentous anoxygenic phototrophic bacterium, Chloroflexus sp. strain MS-G (Chloroflexi)(American Society for Microbiology, 2014-09) Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Schuster, Stephan C.; Ward, David M.; Bryant, Donald A.The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons.Item Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)(2014-07) Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, R. F.; Schuster, Stephan C.; Steinke, L.; Bryant, Donald A.The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.Item Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a(2014-01) Stolyar, S.; Liu, Zhenhua; Thiel, Vera; Tomsho, Lynn P.; Pinel, N.; Nelson, William C.; Lindemann, S.; Romine, Margaret F.; Haruta, S.; Schuster, Stephan C.; Bryant, Donald A.; Frederickson, J. K.The genome of the unicellular cyanobacterium Thermosynechococcus sp. strain NK55a, isolated from the Nakabusa hot spring, Nagano Prefecture, Japan, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to contain 2,358 protein-encoding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.Item Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum.”(2013-11) Liu, Zhenhua; Müller, J.; Li, T.; Alvey, R. M.; Vogl, K.; Frigaard, N. U.; Rockwell, Nathan C.; Tomsho, Lynn P.; Schuster, Stephan C.; Henke, P.; Rohde, M.; Overmann, J.; Bryant, Donald A.Background: ‘Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium. Results: We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described. Conclusions: Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships.