Browsing by Author "Stewart, Philip S."
Now showing 1 - 20 of 185
- Results Per Page
- Sort Options
Item A 3D computer model analysis of three hypothetical biofilm detachment mechanisms(2007-08) Chambless, Jason D.; Stewart, Philip S.Three hypothetical mechanisms of detachment were incorporated into a three-dimensional computer model of biofilm development. The model integrated processes of substrate utilization, substrate diffusion, growth, cell advection, and detachment in a cellular automata framework. The purpose of this investigation was to characterize each of the mechanisms with respect to four criteria: the resulting biofilm structure, the existence of a steady state, the propensity for sloughing events, and the dynamics during starvation. The three detachment mechanisms analyzed represented various physical and biological influences hypothesized to affect biofilm detachment. The first invoked the concept of fluid shear removing biomass that protrudes far above the surface and is therefore subjected to relatively large drag forces. The second pathway linked detachment to changes in the local availability of a nutrient. The third pathway simulated an erosive process in which individual cells are lost from the surface of a biofilm cell cluster. The detachment mechanisms demonstrated diverse behaviors with respect to the four analysis criteria. The height dependant mechanism produced flat, steady state biofilms that lacked sloughing events. Detachment based on substrate limitation produced significant sloughing events. The resulting biofilm structures included distinct, hollow clusters separated by channels. The erosion mechanism produced neither a non-zero steady state nor sloughing events. A mechanism combining all three detachment mechanisms produced mushroom-like structures. The dynamics of biofilm decay during starvation were distinct for each detachment mechanism. These results show that detachment is a critical determinant of biofilm structure and of the dynamics of biofilm accumulation and loss.Item A 3D model of antimicrobial action on biofilms(2005) Hunt, Stephen Michael; Hamilton, Martin A.; Stewart, Philip S.A three-dimensional cellular automata model of biofilm dynamics was adapted to simulate the protection from killing by antimicrobial agents afforded to microorganisms in the biofilm state. The model incorporated diffusion and simultaneous utilization of a single substrate, growth and displacement of cells, detachment, and killing by an antimicrobial agent. The rate of killing was assumed to be directly proportional to the local concentration of substrate available to the microorganisms. Some of the features predicted by this model included development of dynamic, heterogeneous biofilm structures, gradients in substrate concentration leading to regions of substrate depletion in the interior of large cell clusters, variable killing by an antimicrobial agent from one simulation to the next, greater killing of cells at the periphery of cell clusters compared to those cells which were more deeply embedded, and reduced overall antimicrobial susceptibility of cells in the biofilm. These simulations show that substrate limitation can contribute to the protection from antimicrobial agents in biofilms but cannot explain the long-term persistence of biofilm viability that is often observed in practice.Item Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms(2002-12) Gardner, Lawrence Robert; Stewart, Philip S.A continuous flow reactor system was developed to evaluate the efficacy of antimicrobial treatments against sulfate-reducing bacterial biofilms. An annular reactor operating at a nominal dilution rate of 0.5 h-1 was fed one-tenth strength Postgate C medium diluted in 1.5% NaCl and was inoculated with a mixed culture enriched from oilfield-produced water on the same medium. Thin biofilms developed in this reactor after 2 days of operation. The activity of these biofilms resulted in approximately 50 mg S l-1 of sulfide at steady state prior to biocide treatment. Biocide efficacy was quantified by recording the time required for sulfide production to recover following an antimicrobial treatment. In a control experiment in which pure water was applied, the time required to reach 10 mg S l-1 sulfide after the treatment was 1.7±1.2 h, whereas the time to reach this level of sulfide after a pulse dose of 500 mg l-1 glutaraldehyde was delayed to 61±11 h. Nitrite treatment suppressed sulfide production as long as the nitrite concentration remained above 15 mg N l-1. Sulfide production recovered more rapidly after nitrite treatment than it did after glutaraldehyde treatment. Gardner, L.R., P.S. Stewart, "Action of Glutaraldehyde and Nitrite Against Sulfate-Reducing Bacterial Biofilms," J. Industrial Microbiol. Biotech. 29(6):354 (2002).Item Adaptive responses to antimicrobial agents in biofilms(2005-08) Szomolay, Barbara; Klapper, Isaac; Dockery, Jack D.; Stewart, Philip S.Bacterial biofilms demonstrate adaptive resistance in response to antimicrobial stress more effectively than corresponding planktonic populations. We propose here that, in biofilms, reaction-diffusion limited penetration may result in only low levels of antimicrobial exposure to deeper regions of the biofilm. Sheltered cells are then able to enter an adapted resistant state if the local time scale for adaptation is faster than that for disinfection. This mechanism is not available to a planktonic population. A mathematical model is presented to illustrate. Results indicate that, for a sufficiently thick biofilm, cells in the biofilm implement adaptive responses more effectively than do freely suspended cells. Effective disinfection requires applied biocide concentration that increases quadratically or exponentially with biofilm thickness.Item Analysis of biocide transport limitation in an artificial biofilm system(1998-09) Stewart, Philip S.; Grab, L.; Diemer, J. A.An alginate gel bead artificial biofilm system was used to assay biofilm susceptibility to four biocides and to analyse the extent to which each agent penetrated the biofilm. Chlorine, glutaraldehyde, an isothiazolone, and a quaternary ammonium compound were tested on alginate-entrapped Enterobacter aerogenes in gel beads ranging from 1·8 to 6 mm in diameter. Gel-entrapped bacteria were less susceptible to all four antimicrobial agents than were planktonic micro-organisms. The degree of kill measured in artificial biofilm gel beads depended on the size of the gel bead and the cell density at which it was loaded. Disinfection efficacy decreased as gel bead radius or cell density increased. The manifest dependence of biofilm disinfection efficacy on the physical properties of the artificial biofilm (radius and cell density) suggests the impingement of transport limitation of biocide transport into the biofilm. A previously developed theory of biocide reaction and diffusion in biofilm was tested by calculating an appropriate Thiele modulus. In accordance with the theory, the efficacy of all four biocides decreased, albeit noisily, as the Thiele modulus exceeded 1. This result demonstrates that transport limitation can impact antimicrobial performance against biofilms not only of oxidizing biocides but also of non-oxidizing agents.Item Analysis of biofilm disinfection by monochloramine and free chlorine(1993) Griebe, Thomas; Chen, Ching-I; Srinivasan, Rohini; Stewart, Philip S.Item Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment(2018-01) James, Garth A.; Chesnel, L.; Boegli, Laura; Pulcini, Elinor D.; Fisher, Steve T.; Stewart, Philip S.BACKGROUND: Clostridium difficile, a spore-forming Gram-positive anaerobic bacillus, is the most common causative agent of healthcare-associated diarrhoea. Formation of biofilms may protect C. difficile against antibiotics, potentially leading to treatment failure. Furthermore, bacterial spores or vegetative cells may linger in biofilms in the gut causing C. difficile infection recurrence. OBJECTIVES: In this study, we evaluated and compared the efficacy of four antibiotics (fidaxomicin, surotomycin, vancomycin and metronidazole) in penetrating C. difficile biofilms and killing vegetative cells. METHODS: C. difficile biofilms grown initially for 48 or 72 h using the colony biofilm model were then treated with antibiotics at a concentration of 25 × MIC for 24 h. Vegetative cells and spores were enumerated. The effect of treatment on biofilm structure was studied by scanning electron microscopy (SEM). The ability of fidaxomicin and surotomycin to penetrate biofilms was studied using fluorescently tagged antibiotics. RESULTS: Both surotomycin and fidaxomicin were significantly more effective than vancomycin or metronidazole (P < 0.001) at killing vegetative cells in established biofilms. Fidaxomicin was more effective than metronidazole at reducing viable spore counts in biofilms (P < 0.05). Fluorescently labelled surotomycin and fidaxomicin penetrated C. difficile biofilms in < 1 h. After 24 h of treatment, SEM demonstrated that both fidaxomicin and surotomycin disrupted the biofilm structure, while metronidazole had no observable effect. CONCLUSIONS: Fidaxomicin is effective in disrupting C. difficile biofilms, killing vegetative cells and decreasing spore counts.Item Anti-biofilm properties of chitosan-coated surfaces(2008-01) Carlson, Ross P.; Taffs, Reed L.; Davison, William Marshall; Stewart, Philip S.Surfaces coated with the naturally-occurring polysaccharide chitosan (partially deacetylated poly N-acetyl glucosamine) resisted biofilm formation by bacteria and yeast. Reductions in biofilm viable cell numbers ranging from 95% to 99.9997% were demonstrated for Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans on chitosan-coated surfaces over a 54-h experiment in comparison to controls. For instance, chitosan-coated surfaces reduced S. epidermidis surface-associated growth more than 5.5 10log units (99.9997%) compared to a control surface. As a comparison, coatings containing a combination of the antibiotics minocycline and rifampin reduced S. epidermidis growth by 3.9 10log units (99.99%) and coatings containing the antiseptic chlorhexidine did not significantly reduce S. epidermidis surface associated growth as compared to controls. The chitosan effects were confirmed with microscopy. Using time-lapse fluorescence microscopy and fluorescent-dye-loaded S. epidermidis, the permeabilization of these cells was observed as they alighted on chitosan-coated surfaces. This suggests chitosan disrupts cell membranes as microbes settle on the surface. Chitosan offers a flexible, biocompatible platform for designing coatings to protect surfaces from infection.Item Antibiotic resistance of bacteria in biofilms(2001-07) Stewart, Philip S.; Costerton, J. WilliamBacteria that adhere to implanted medical devices or damaged tissue can encase themselves in a hydrated matrix of polysaccharide and protein, and form a slimy layer known as a biofilm. Antibiotic resistance of bacteria in the biofilm mode of growth contributes to the chronicity of infections such as those associated with implanted medical devices. The mechanisms of resistance in biofilms are different from the now familiar plasmids, transposons, and mutations that confer innate resistance to individual bacterial cells. In biofilms, resistance seems to depend on multicellular strategies. We summarize the features of biofilm infections, review emerging mechanisms of resistance, and discuss potential therapies.Item Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria(2019-10) Walsh, Danica J.; Livinghouse, Tom; Goeres, Darla M.; Mettler, Madelyn; Stewart, Philip S.Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.Item Antimicrobial activity of synthetic cationic peptides & lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms(2015-07) Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S.; Pitts, Betsey; Lohner, Karl; Martinez de Tejada, GuillermoBackground Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen - particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. Results The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least hydrophobic lipopeptides, DI-MB-LF11-322 (2,2-dimethylbutanoyl-PFWRIRIRR) and DI-MB-LF11-215, penetrated deep into the biofilm structure and homogenously killed biofilm-forming bacteria. Conclusion We identified peptides derived from human lactoferricin with potent antimicrobial activity against P. aeruginosa growing either in planktonic or in biofilm mode. Although further structure-activity relationship analyses are necessary to optimize the anti-biofilm activity of these compounds, the results indicate that lactoferricin derived peptides are promising anti-biofilm agents."Item Antimicrobial penetration and efficacy in an in vitro oral biofilm model(2011-05) Corbin, A.; Pitts, Betsey; Parker, Albert E.; Stewart, Philip S.The penetration and overall efficacy of six mouthrinse actives was evaluated by using an in vitro flow cell oral biofilm model. The technique involved preloading biofilm cells with a green fluorescent dye that leaked out as the cells were permeabilized by a treatment. The loss of green color, and of biomass, was observed by time-lapse microscopy during 60 min of treatment under continuous flow conditions. The six actives analyzed were ethanol, sodium lauryl sulfate, triclosan, chlorhexidine digluconate (CHX), cetylpyridinium chloride, and nisin. Each of these agents effected loss of green fluorescence throughout biofilm cell clusters, with faster action at the edge of a cell cluster and slower action in the cluster center. The time to reach half of the initial fluorescent intensity at the center of a cell cluster, which can be viewed as a combined penetration and biological action time, ranged from 0.6 to 19 min for the various agents. These times are much longer than the predicted penetration time based on diffusion alone, suggesting that anti-biofilm action was controlled more by the biological action time than by the penetration time of the active. None of the agents tested caused any removal of the biofilm. The extent of fluorescence loss after 1 h of exposure to an active ranged from 87 to 99.5%, with CHX being the most effective. The extent of fluorescence loss in vitro, but not penetration and action time, correlated well with the relative efficacy data from published clinical trials.Item Antimicrobial Tolerance in Biofilms(2015-06) Stewart, Philip S.Tolerance to antimicrobial agents is a common feature of microbial biofilm formation ( 1 – 7 ). Table 1 presents a few examples of biofilm tolerance to biocides and antiseptics, and Table 2 summarizes some examples of antibiotic tolerance in biofilms. Neither of these listings is comprehensive, but these two data sets can be analyzed to gain insight into the factors that influence biofilm tolerance. The examples have been selected to illustrate the wide variety of microbial species, growth environments, and antimicrobial chemistries for which biofilm reduced susceptibility has been reported. The short list in Table 1 encompasses studies designed to mimic biofilms in dental plaque, hot tubs, paper mills, drinking water, household drains, urinary catheters, food processing plants, cooling water systems, and hospitals. These examples employ a range of individual and mixed species biofilms and diverse biocidal chemistries including halogens, phenolics, quaternary ammonium compounds, aldehydes, a plant essential oil, and peroxides. The studies captured in Table 2 cover 19 antibiotics and 9 organisms that include aerobic bacteria, strict anaerobes, and a fungus.Item Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms(2006-01) Borriello, Giorgia B.; Richards, Lee A.; Ehrlich, Garth D.; Stewart, Philip S.Arginine enhanced the killing of Pseudomonas aeruginosa by ciprofloxacin and tobramycin under anaerobic, but not aerobic, growth conditions. Arginine or nitrate also enhanced the killing by these antibiotics in mature biofilms, reducing viable cell counts by a factor of 10 to 100 beyond that achieved by antibiotics alone.Item Assessing biofouling on polyamide reverse osmosis (RO) membrane surfaces in a laboratory system(2010-04) Khan, Mohiuddin M. T.; Stewart, Philip S.; Moll, D. J.; Mickols, W. E.; Burr, Mark D.; Nelson, Sara E.; Camper, Anne K.Biofouling of reverse osmosis (RO) membranes is a major impediment in both wastewater reuse and desalination of sea/brackish waters. A benefit to the industry would be a simple screening approach to evaluate biofouling resistant RO membranes for their propensity to biofoulants. To observe the relationship between initial membrane productivity and control of biofilm formation governed by surface modification to the aromatic polyamide thin-film composite RO membranes, three different RO membranes developed by the FilmTec Corporation including FilmTec’s commercial membrane BW30 (RO#1) and two experimental membranes (RO #2 and #3) were used. RO #2 and RO #3 were modified with a proprietary aliphatic group and with an extra proprietary aromatic group, respectively. Membrane swatches were fixed on coupons in rotating disk reactor systems without filtration and exposed to water with indigenous organisms supplemented with 1.5 mg/L organic carbon under continuous flow. After biofouling had developed, the membranes were sacrificed and subjected to several analyses. Staining and epifluorescence microscopy revealed more cells on RO #2 and #3 compared to RO #1. Based on image analysis of 5-µmthick stained biofoulant cryo-sections, the accumulation of hydrated biofoulants on RO #1 and #3 were from 0.87 to 1.26µm/day, which was lower than that on RO#2 (2.19µm/day). Biofoulants increased the hydrophobicity of RO #2 to the greatest amount, up to 32°, as determined by contact angle. In addition, a wide range of changes of the chemical elements of the RO surfaces was observed with X-ray photoelectron spectroscopy analysis. RO #2 with the highest initial membrane productivity showed the poorest biofouling resistance. A combination of these novel approaches showed good agreement and suggested that membrane productivity, heterogeneity of anti-biofouling agents on membrane surface, stability of surface chemical elements and the role of virgin RO surface hydrophobicity should be jointly considered during the development of anti-biofouling polyamide thin-film RO surfaces.Item Bacterial biofilm in acute lesions of hidradenitis suppurativa(2017-01) Okoye, Ginette A.; Vlassova, Natalia; Olowoyeye, Omolara; Agostinho, Alessandra; James, Garth A.; Stewart, Philip S.; Leung, Anthony; Lazarus, Gerald S.Item Bacterial biofilms: A common cause of persistent infections(1999-05) Costerton, J. William; Stewart, Philip S.; Greenberg, E. P.Bacteria that attach to surfaces aggregate in a hydrated polymeric matrix of their own synthesis to form biofilms. Formation of these sessile communities and their inherent resistance to antimicrobial agents are at the root of many persistent and chronic bacterial infections. Studies of biofilms have revealed differentiated, structured groups of cells with community properties. Recent advances in our understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.Item Bacterial characterization of toilet bowl biofilms(1998-08) Pitts, Betsey; Stewart, Philip S.; McFeters, Gordon A.; Hamilton, Martin A.; Willse, Alan Ray; Zelver, NickMethods have been developed and applied for sampling, characterizing and quantifying naturally occurring toilet bowl biofilms. Ceramic porcelain disks mounted in neoprene rubber strips were sealed in place in toilet bowls in three residences in Bozeman, Montana. In each bowl, duplicate strips were placed above, at and below the water level. In 7 consecutive weeks, duplicate disks from each zone in each bowl were removed. Surface biofouling was measured by viable cell areal density. Specific fouling rates were calculated and variability among toilet bowls and water levels was assessed. Specific fouling rates ranged from 0.0 to 0.46d‐1. Average areal cell densities at the end of 7 weeks ranged from 103 to 107cfu cm‐2. The extent of fouling was highest below the water line. Neutralization of the chlorine residual (typically 0.9 mg l‐1) in one toilet did not increase the extent of fouling compared to the controls. Biofilm areal viable cell densities and bowl water viable counts were positively correlated (r = 0.78). The visual threshold for detection of toilet bowl biofilm by the naked eye was approximately 105 cfu cm‐2. In a heavily fouled toilet bowl, the biofilm was up to 20 μm thick. Microorganisms were isolated from the biofilm and identified. Of the 32 organisms that were further characterized, 10 were identified as Pseudomonas, Sphingomonas or Chryseomonas species.Item Battling biofilms(2001-07) Costerton, J. William; Stewart, Philip S.Item Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds(2015-05) Ammons, Mary Cloud B.; Morrissey, Kathryn; Tripet, Brian P.; Van Leuvan, James T.; Han, Anne; Lazarus, Gerald S.; Zenilman, Jonathan M.; Stewart, Philip S.; James, Garth A.; Copie, ValerieChronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR) spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.