Browsing by Author "Usselman, Robert J."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle(2017-03) Arthaut, Louis-David; Jourdan, Nathalie; Mteyrek, Ali; Procopio, Maria; El-Esawi, Mohamed; d'Harlingue, Alain; Bouchet, Pierre-Etienne; Witczak, Jacques; Ritz, Thorsten; Klarsfeld, Andre; Birman, Serge; Usselman, Robert J.; Hoecker, Ute; Martino, Carlos F.; Ahmad, MargaretCryptochromes are evolutionarily conserved blue-light absorbing flavoproteins which participate in many important cellular processes including in entrainment of the circadian clock in plants, Drosophila and humans. Drosophila melanogaster cryptochrome (DmCry) absorbs light through a flavin (FAD) cofactor that undergoes photoreduction to the anionic radical (FAD[bullet]-) redox state both in vitro and in vivo. However, recent efforts to link this photoconversion to the initiation of a biological response have remained controversial. Here, we show by kinetic modeling of the DmCry photocycle that the fluence dependence, quantum yield, and half-life of flavin redox state interconversion are consistent with the anionic radical (FAD[bullet]-) as the signaling state in vivo. We show by fluorescence detection techniques that illumination of purified DmCry results in enzymatic conversion of molecular oxygen (O2) to reactive oxygen species (ROS). We extend these observations in living cells to demonstrate transient formation of superoxide (O2[bullet]-), and accumulation of hydrogen peroxide (H2O2) in the nucleus of insect cell cultures upon DmCry illumination. These results define the kinetic parameters of the Drosophila cryptochrome photocycle and support light-driven electron transfer to the flavin in DmCry signaling. They furthermore raise the intriguing possibility that light-dependent formation of ROS as a byproduct of the cryptochrome photocycle may contribute to its signaling role.Item Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations(2016-08) Machovina, Melodie M.; Usselman, Robert J.; DuBois, Jennifer L.Members of the antibiotic biosynthesis monooxygenase family catalyze O2-dependent oxidations and oxygenations in the absence of any metallo- or organic cofactor. How these enzymes surmount the kinetic barrier to reactions between singlet substrates and triplet O2 is unclear, but the reactions have been proposed to occur via a flavin-like mechanism, where the substrate acts in lieu of a flavin cofactor. To test this model, we monitored the uncatalyzed and enzymatic reactions of dithranol, a substrate for the nogalamycin monooxygenase (NMO) from Streptomyces nogalater As with flavin, dithranol oxidation was faster at a higher pH, although the reaction did not appear to be base-catalyzed. Rather, conserved asparagines contributed to suppression of the substrate pKa The same residues were critical for enzymatic catalysis that, consistent with the flavoenzyme model, occurred via an O2-dependent slow step. Evidence for a superoxide/substrate radical pair intermediate came from detection of enzyme-bound superoxide during turnover. Small molecule and enzymatic superoxide traps suppressed formation of the oxygenation product under uncatalyzed conditions, whereas only the small molecule trap had an effect in the presence of NMO. This suggested that NMO both accelerated the formation and directed the recombination of a superoxide/dithranyl radical pair. These catalytic strategies are in some ways flavin-like and stand in contrast to the mechanisms of urate oxidase and (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, both cofactor-independent enzymes that surmount the barriers to direct substrate/O2 reactivity via markedly different means.Item The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics(2016-12) Usselman, Robert J.; Chavarriaga, Cristina; Castello, Pablo R.; Procopio, Maria; Ritz, Thorsten; Dratz, Edward A.; Singel, David J.; Martino, Carlos F.Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O2) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O2•−) and hydrogen peroxide (H2O2) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics.