Browsing by Author "Veluchamy, Raaja R. A."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Characterizing temporal development of biofilm porosity using artificial neural networks(2008-06) Veluchamy, Raaja R. A.; Lewandowski, Zbigniew; Beyenal, HalukWe used artificial neural networks (ANN) to compute parameters characterising biofilm structure from biofilm images and to interpolate a limited number of experimental data characterising the effects of nutrient concentration and flow velocity on the areal porosity of biofilms. ANN were trained using a set of experimental data characterising structural parameters of biofilms of Pseudomonas aeruginosa (ATCC #700829), Pseudomonas fluorescens (ATCC #700830) and Klebsiella pneumoniae (ATCC #700831) for various flow velocities and glucose concentrations. We used 80% of the data to train ANN and 10% of the data to validate the results, which is routinely carried out as a countermeasure against overtraining. Trained ANN were used to interpolate into the data set and evaluate the missing 10% of the data. To compare ANN accuracy in evaluating the missing data with the accuracies achieved using other interpolation algorithms, we used spline, cubic, linear and nearest neighbour interpolation algorithms to evaluate the missing data. ANN estimates were consistently closer to the experimental data than the estimates made using the other methods.Item Spatial patterns of DNA replication, protein synthesis and oxygen concentration within bacterial biofilms reveal diverse physiological states(2007-03) Rani, Suriani A.; Pitts, Betsey; Beyenal, Haluk; Veluchamy, Raaja R. A.; Lewandowski, Zbigniew; Davison, William M.; Buckingham-Meyer, Kelli; Stewart, Philip S.It has long been suspected that microbial biofilms harbor cells in a variety of activity states, but there have been few direct experimental visualizations of this physiological heterogeneity. Spatial patterns of DNA replication and protein synthetic activity were imaged and quantified in staphylococcal biofilms using immunofluorescent detection of pulse-labeled DNA and also an inducible green fluorescent protein (GFP) construct. Stratified patterns of DNA synthetic and protein synthetic activity were observed in all three biofilm systems to which the techniques were applied. In a colony biofilm system, the dimensions of the zone of anabolism at the air interface ranged from 16 to 38 μm and corresponded with the depth of oxygen penetration measured with a microelectrode. A second zone of activity was observed along the nutrient interface of the biofilm. Much of the biofilm was anabolically inactive. Since dead cells constituted only 10% of the biofilm population, most of the inactive cells in the biofilm were still viable. Collectively, these results suggest that staphylococcal biofilms contain cells in at least four distinct states: growing aerobically, growing fermentatively, dead, and dormant. The variety of activity states represented in a biofilm may contribute to the special ecology and tolerance to antimicrobial agents of biofilms.Item Wireless sensors powered by microbial fuel cells(2005-07) Shantaram, Avinash; Beyenal, Haluk; Veluchamy, Raaja R. A.; Lewandowski, ZbigniewMonitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.