Browsing by Author "Woo, Tom K."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Hydrogen Adsorption in Ultramicroporous Metal–Organic Frameworks Featuring Silent Open Metal Sites(American Chemical Society, 2023-11) Chiu, Nan Chieh; Compton, Dalton; Gładysiak, Andrzej; Simrod, Scott; Khivantsev, Konstantin; Woo, Tom K.; Stadie, Nicholas P.; Stylianou, Kyriakos C.In this study, we utilized an ultramicroporous metal–organic framework (MOF) named [Ni3(pzdc)2(ade)2(H2O)4]·2.18H2O (where H3pzdc represents pyrazole-3,5-dicarboxylic acid and ade represents adenine) for hydrogen (H2) adsorption. Upon activation, [Ni3(pzdc)2(ade)2] was obtained, and in situ carbon monoxide loading by transmission infrared spectroscopy revealed the generation of open Ni(II) sites. The MOF displayed a Brunauer–Emmett–Teller (BET) surface area of 160 m2/g and a pore size of 0.67 nm. Hydrogen adsorption measurements conducted on this MOF at 77 K showed a steep increase in uptake (up to 1.93 mmol/g at 0.04 bar) at low pressure, reaching a H2 uptake saturation at 2.11 mmol/g at ∼0.15 bar. The affinity of this MOF for H2 was determined to be 9.7 ± 1.0 kJ/mol. In situ H2 loading experiments supported by molecular simulations confirmed that H2 does not bind to the open Ni(II) sites of [Ni3(pzdc)2(ade)2], and the high affinity of the MOF for H2 is attributed to the interplay of pore size, shape, and functionality.