Browsing by Author "Woyke, Tanja"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea(Public Library of Science, 2022-01) Chadwick, Grayson L.; Skennerton, Connor T.; Laso-Pérez, Rafael; Leu, Andy O.; Speth, Daan R.; Yu, Hang; Morgan-Lang, Connor; Hatzenpichler, Roland; Goudeau, Danielle; Malmstrom, Rex; Brazelton, William J.; Woyke, Tanja; Hallam, Steven J.; Tyson, Gene W.; Wegener, Gunter; Boetius, Antje; Orphan, Victoria J.The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.Item Draft genome sequence and description of Janthinobacterium sp. strain CG3, a psychrotolerant antarctic Supraglacial stream bacterium(2013-11) Smith, Heidi J.; Akiyama, Tatsuya; Foreman, Christine M.; Franklin, Michael J.; Woyke, Tanja; Teshima, H; Davenport, K.; Daligault, H.; Erkkila, T.; Goodwin, L. A.; Gu, W.; Xu, Yan; Chain, P. S.Here we present the draft genome sequence of Janthinobacterium sp. strain CG3, a psychrotolerant non-violacein-producing bacterium that was isolated from the Cotton Glacier supraglacial stream. The genome sequence of this organism will provide insight into the mechanisms necessary for bacteria to survive in UV-stressed icy environments.Item High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics(Frontiers Media SA, 2021-04) Reichart, Nicholas J.; Bowers, Robert M.; Woyke, Tanja; Hatzenpichler, RolandEnzyme stability and activity at elevated temperatures are important aspects in biotechnological industries, such as the conversion of plant biomass into biofuels. In order to reduce the costs and increase the efficiency of biomass conversion, better enzymatic processing must be developed. Hot springs represent a treasure trove of underexplored microbiological and protein chemistry diversity. Herein, we conduct an exploratory study into the diversity of hot spring biomass-degrading potential. We describe the taxonomic diversity and carbohydrate active enzyme (CAZyme) coding potential in 71 publicly available metagenomic datasets from 58 globally distributed terrestrial geothermal features. Through taxonomic profiling, we detected a wide diversity of microbes unique to varying temperature and pH ranges. Biomass-degrading enzyme potential included all five classes of CAZymes and we described the presence or absence of genes encoding 19 glycosyl hydrolases hypothesized to be involved with cellulose, hemicellulose, and oligosaccharide degradation. Our results highlight hot springs as a promising system for the further discovery and development of thermostable biomass-degrading enzymes that can be applied toward generation of renewable biofuels. This study lays a foundation for future research to further investigate the functional diversity of hot spring biomass-degrading enzymes and their potential utility in biotechnological processing.Item High-quality draft genome sequence of Desulfovibrio carbinoliphilus FW-101-2B, an organic acid-oxidizing sulfate-reducing bacterium isolated from uranium(VI)-contaminated groundwater(2015-03) Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.; Carroll, Sue L.; Lucas, Susan; Han, Jie; Lapidus, Alla; Cheng, J. F.; Goodwin, L. A.; Pitluck, S.; Peters, L.; Chertkov, Olga; Held, B; Detter, John C.; Han, C.; Tapia, R.; Land, M. L.; Hauser, Loren; Kyrpides, Nikos; Ivanova, N. N.; Mikhailova, Natalia; Pagani, I.; Woyke, Tanja; Arkin, Adam P.; Dehal, P.; Chivian, D.; Criddle, Craig S.; Wu, Wei-Min; Chakraborty, R.; Hazen, Terry C.; Fields, Matthew W.Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing d-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.Item Metagenomes and Metagenome-Assembled Genomes from Substrate-Amended Hot Spring Sediment Incubations from Yellowstone National Park(American Society for Microbiology, 2022-03) Reichart, Nicholas J.; Bowers, Robert M.; Woyke, Tanja; Hatzenpichler, RolandHere, we report on eight sediment metagenomes obtained from an alkaline hot spring, with their corresponding metagenome-assembled genomes. Samples had been incubated for 48 h with various substrate amendments in conjunction with the amino acid analog l -homopropargylglycine in a study targeted at identifying anabolicly active uncultured thermophilic archaea and bacteria.Item Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea(Public Library of Science, 2023-09) Murali, Ranjani; Yu, Hang; Speth, Daan R.; Wu, Fabai; Metcalfe, Kyle S.; Crémière, Antoine; Laso-Pèrez, Rafael; Malmstrom, Rex R.; Goudeau, Danielle; Woyke, Tanja; Hatzenpichler, Roland; Chadwick, Grayson L.; Connon, Stephanie A.; Orphan, Victoria J.Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.Item Yellowstone Lake Nanoarchaeota(2013-09) Clingenpeel, Scott; Jinjun, K.; Macur, Richard E.; Woyke, Tanja; Lovalvo, D.; Varley, J.; Inskeep, William P.; Nealson, Kenneth H.; McDermott, Timothy R.Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park (YNP), where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats(HR) were observed in pyrosequence reads and in near full-length Sanger sequences,averaging 112 HR per 1349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels). However, Sanger sequencing of two different sets of PCR clones (110bp,1349bp) demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (71 pyrosequencing reads) was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on nearfull-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.