Browsing by Author "Zabinski, Catherine A."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Bulk optical characterization of dissolved organic matter from semiarid wheat-based cropping systems(2017-11) Romero, Carlos M.; Engel, Richard E.; D'Andrilli, Juliana; Chen, Cheng-Sao; Zabinski, Catherine A.; Miller, Perry R.; Wallander, R.Dissolved organic matter (DOM) plays a critical role in the cycling of nutrients and long-term agricultural sustainability. The composition of DOM in soil is likely altered due to management, yet there is limited knowledge on the effect of long-term cropping on DOM chemical character. Here, we characterized water extractable DOM composition along a gradient of soil organic carbon (SOC) affected by differing cropping and tillage intensity in a semiarid climate of the northern Great Plains, USA. Soil samples (0–10, 10–20, 20–30 cm) were collected from conventional till-fallow winter wheat (Triticum aestivum L.; Ftill-W), no-till spring pea/oilseed-wheat (Pisum sativum L.; Pg/O-W), and no-till continuous wheat (W-W) fields, and analyzed using UV/Vis absorbance and excitation-emission matrix fluorescence spectroscopy. The concentration of DOM decreased with depth and was significantly greater (P < 0.05) under W-W or Pg/O-W than Ftill-W. The absorbance at 254 nm (Abs254), a proxy for DOM aromatic nature, indicated that aromaticity decreased with depth and lower biomass-C inputs (i.e. W-W ≥ Pg/O-W ≥ Ftill-W). Multidimensional parallel factor (PARAFAC) analysis revealed humic-like (C1, C2), monolignol-like (C3), and protein/tannin-like (C4) components with varying fluorescence intensities as a function of cropping system and soil depth. DOM humification, indicated by the humification index (HIX), increased significantly with depth (P < 0.05) and was higher for Ftill-W (2.95) than W-W (2.61) or Pg/O-W (2.28). Overall, DOM became depleted of plant-derived constituents and was enriched by more decomposed, condensed substances in Ftill-W, as compared to W-W or Pg/O-W soils. DOM composition is strongly affected by cropping intensity and such changes are important drivers controlling SOC accretion in arable soils.Item Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis(2016-06) Rua, Megan A.; Antoninka, Anita; Antunes, Pedro M.; Chaudhary, V. Bala; Gehring, Catherine; Lamit, Louis J.; Piculell, Bridget J.; Bever, James D.; Zabinski, Catherine A.; Meadow, James F.; Lajeunesse, Marc J.; Milligan, Brook G.; Karst, Justine; Hoeksema, Jason D.Background: Local adaptation, the differential success of genotypes in their native versus foreign environment, arises from various evolutionary processes, but the importance of concurrent abiotic and biotic factors as drivers of local adaptation has only recently been investigated. Local adaptation to biotic interactions may be particularly important for plants, as they associate with microbial symbionts that can significantly affect their fitness and may enable rapid evolution. The arbuscular mycorrhizal (AM) symbiosis is ideal for investigations of local adaptation because it is globally widespread among most plant taxa and can significantly affect plant growth and fitness. Using meta- analysis on 1170 studies (from 139 papers), we investigated the potential for local adaptation to shape plant growth responses to arbuscular mycorrhizal inoculation. Results: The magnitude and direction for mean effect size of mycorrhizal inoculation on host biomass depended on the geographic origin of the soil and symbiotic partners. Sympatric combinations of plants, AM fungi, and soil yielded large increases in host biomass compared to when all three components were allopatric. The origin of either the fungi or the plant relative to the soil was important for explaining the effect of AM inoculation on plant biomass. If plant and soil were sympatric but allopatric to the fungus, the positive effect of AM inoculation was much greater than when all three components were allopatric, suggesting potential local adaptation of the plant to the soil; however, if fungus and soil were sympatric (but allopatric to the plant) the effect of AM inoculation was indistinct from that of any allopatric combinations, indicating maladaptation of the fungus to the soil. Conclusions: This study underscores the potential to detect local adaptation for mycorrhizal relationships across a broad swath of the literature. Geographic origin of plants relative to the origin of AM fungal communities and soil is important for describing the effect of mycorrhizal inoculation on plant biomass, suggesting that local adaptation represents a powerful factor for the establishment of novel combinations of fungi, plants, and soils. These results highlight the need for subsequent investigations of local adaptation in the mycorrhizal symbiosis and emphasize the importance of routinely considering the origin of plant, soil, and fungal components.Item Legume, cropping intensity, and N-fertilization effects on soil attributes and processes from an eight-year-old semiarid wheat system(2015-06) O'Dea, Justin K.; Jones, Clain A.; Zabinski, Catherine A.; Miller, Perry R.; Keren, Ilai N.In the North American northern Great Plains (NGP), legumes are promising summer fallow replacement/cropping intensification options that may decrease dependence on nitrogen (N) fertilizer in small grain systems and mitigate effects of soil organic matter (SOM) losses from summer fallow. Benefits may not be realized immediately in semiarid conditions though, and longer-term effects of legumes and intensified cropping in this region are unclear, particularly in no-till systems. We compared effects of four no-till wheat (Triticum aestivum L.) cropping systems–summer fallow–wheat (F–W), continuous wheat (CW), legume green manure (pea, Pisum sativum L.)—wheat (LGM–W), and pea–wheat (P–W)—on select soil attributes in an 8-year-old rotation study, and N fertilizer effects on C and N mineralization on a duplicate soil set in a laboratory experiment. We analyzed potentially mineralizable carbon and nitrogen (PMC and PMN) and mineralization trends with a nonlinear model, microbial biomass carbon (MB-C), and wet aggregate stability (WAS). Legume-containing systems generally resulted in higher PMC, PMN, and MB-C, while intensified systems (CW and P–W) had higher WAS. Half-lives of PMC were shortest in intensified systems, and were longest in legume systems (LGM–W and P–W) for PMN. Nitrogen addition depressed C and N mineralization, particularly in CW, and generally shortened the half-life of mineralizable C. Legumes may increase long-term, no-till NGP agroecosystem resilience and sustainability by (1) increasing the available N-supply (~26–50 %) compared to wheat-only systems, thereby reducing the need for N fertilizer for subsequent crops, and (2) by potentially mitigating negative effects of SOM loss from summer fallow.Item Long‐term cover crop effects on biomass, soil nitrate, soil water, and wheat(Wiley, 2023-05) Miller, Perry R.; Jones, Clain A.; Zabinski, Catherine A.; Tallman, Susan M.; Housman, Megan L.; D'Agati, Kristen M.; Holmes, Jeffrey A.Cover crops during summer fallow have been rarely researched in the semiarid northern Great Plains. This study was conducted during 2012–2019 at four Montana locations and included four functional groups (Brassica family, fibrous-rooted crops, legumes, and tap-rooted crops). Eleven treatments included sole functional groups, a Full Mix, the Full Mix minus each functional group, pea, and chemical fallow. Wheat (Triticum aestivum L.) was grown after each cover crop year with three nitrogen (N) fertilizer rates. Cover crops were terminated with herbicide at first flower stage of pea (Pisum sativum L.) 57 to 66 days after planting. Shoot biomass averaged 2.0 Mg ha−1 over eight site-years representative of dryland farming in Montana. Using equal overall plant densities, treatments with six species averaged 13% greater biomass than two species. Measured at termination to a 0.9-m depth, Fallow held greater soil water than cover crop treatments, with Fallow averaging 57 mm greater than the Full Mix. Soil nitrate averaged 49 kg N ha−1 greater after Fallow than the Full Mix; the Legume treatment averaged 26 kg N ha−1 greater than the Minus Legume treatment. Wheat yield on Fallow averaged 0.85 Mg ha−1 greater than the Full Mix in 5 of 10 site-years, mainly at the driest site-years. The Legume treatment elevated wheat protein over the Minus Legume treatment by an average of 15 g kg−1. Cover crops grown during summer fallow reduced soil nitrate-N, soil water, and wheat yields compared with chemical fallow, especially in the major wheat growing region of north central Montana.Item Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms(2011-05) Taylor, Carrie R.; Hook, Paul B.; Stein, Otto R.; Zabinski, Catherine A.Plants have many well-documented influences in treatment wetlands, but differences in individual species’ effects on year-round and seasonal performance are poorly understood. In this study, we evaluated plant effects on seasonal patterns of organic carbon removal (measured as COD) and sulfate concentration (used as an indicator of rootzone oxidation) in replicated, batch-loaded, greenhouse microcosms simulating subsurface treatment wetlands. Microcosms were planted with monocultures of 19 plant species or left unplanted as controls, dosed every 20 days with synthetic secondary wastewater, and operated over 20 months at temperatures from 4 to 24 °C. Study-long COD removal averaged 70% for controls and 70–97% for individual species. Most species enhanced COD removal significantly and the benefits of plants were greatest at 4–8 °C because COD removal decreased at low temperatures in controls but displayed limited seasonal variation in planted microcosms. Removal was significantly better at 24 °C than 4 °C with two species (Panicum virgatum and Leymus cinereus), significantly poorer with two species (Carex utriculata and Phalaris arundinacea), and did not differ with 15 species. Only one species showed a significant positive correlation between temperature and COD removal (Iris missouriensis, r = 0.67), while two species showed significant negative correlations (better when colder: Carex nebrascensis, r = −0.67; C. utriculata, r = −0.93). High COD removal throughout the study was strongly associated with high SO4 concentrations at low temperatures, suggesting that plant performance is related to rootzone oxidation and species’ abilities to promote aerobic over anaerobic microbial processes, particularly in winter. Results indicate that improved year-round and cold-season COD removal is common across diverse wetland plant species and novel species can be as good or better than those typically used. Better performing species were largely in the sedge and rush families (Cyperaceae and Juncaceae), while poorer performing species were largely in the grass family (Poaceae).