Scholarly Work - Ecology
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8716
Browse
2 results
Search Results
Item Influence of biomimicry structures on ecosystem function in a Rocky Mountain incised stream(John Wiley & Sons, Ltd, 2021-08) Reinert, James Holden; Albertson, Lindsey K.; Junker, James R.Rising levels of stream degradation have motivated a boom in restoration projects across the globe. However, postrestoration monitoring is still frequently lacking and does not always incorporate biotic responses to changes in the physical template. Beaver mimicry structures (BMSs) are becoming a popular tool to restore degraded streams throughout the American West, but relatively little is known about how these installations influence both biotic and abiotic factors, with consequences for ecosystem functioning. We monitored basal resources, organic and inorganic material standing stocks, and macroinvertebrate density, biomass, and production to quantify functional responses to BMS installation. We compared conditions at BMS sites to naturally occurring beaver dam and reference riffle sites in a low-gradient stream in southwest Montana. Thermal ranges were contracted, and daily maximum temperatures were higher, in the BMS treatment compared to the reference riffle treatment. Fine sediment standing stock and basal resources were similar in Beaver and BMS treatments, and both treatments were higher than reference riffles. All treatments differed in macroinvertebrate density, which was highest in the Beaver treatment, followed by Mimic and then Reference treatment. Biomass and secondary production were higher in Beaver and BMS treatments compared to the Reference treatment, but only Beaver and Reference treatments differed significantly, likely due to differences in physical habitat and basal resource availability. Consequently, production of collector–gatherers in the BMS treatment and shredders in the Beaver treatment was higher than in reference riffles. Changes to local hydrology and sediment dynamics resulting from BMS influence biotic functional responses like organic material standing stock and secondary production, creating habitat and ecosystem function distinct from riffles and similar to target conditions of natural beaver dams. To continue to improve BMS as a standard restoration practice, future research could consider the extent of degradation, increasing temporal scale of monitoring. Alterations to aquatic–terrestrial subsidies and impacts to fishes.Item Toward spatio-temporal delineation of positive interactions in ecology(2020-09) Tumolo, Benjamin B.; Calle, Leonardo; Anderson, Heidi E.; Briggs, Michelle A.; Carlson, Samuel P.; MacDonald, Michael J.; Reinert, James Holden; Albertson, Lindsey K.Given unprecedented rates of biodiversity loss, there is an urgency to better understand the ecological consequences of interactions among organisms that may lost or altered. Positive interactions among organisms of the same or different species that directly or indirectly improve performance of at least one participant can structure populations and communities and control ecosystem process. However, we are still in need of synthetic approaches to better understand how positive interactions scale spatio-temporally across a range of taxa and ecosystems. Here, we synthesize two complementary approaches to more rigorously describe positive interactions and their consequences among organisms, across taxa, and over spatio-temporal scales. In the first approach, which we call the mechanistic approach, we make a distinction between two principal mechanisms of facilitation—habitat modification and resource modification. Considering the differences in these two mechanisms is critical because it delineates the potential spatio-temporal bounds over which a positive interaction can occur. We offer guidance on improved sampling regimes for quantification of these mechanistic interactions and their consequences. Second, we present a trait-based approach in which traits of facilitators or traits of beneficiaries can modulate their magnitude of effect or how they respond to either of the positive interaction mechanisms, respectively. Therefore, both approaches can be integrated together by quantifying the degree to which a focal facilitator's or beneficiary's traits explain the magnitude of a positive effect in space and time. Furthermore, we demonstrate how field measurements and analytical techniques can be used to collect and analyze data to test the predictions presented herein. We conclude by discussing how these approaches can be applied to contemporary challenges in ecology, such as conservation and restoration and suggest avenues for future research.