Scholarly Work - Ecology
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8716
Browse
2 results
Search Results
Item Evaluating the summer landscapes of predation risk and forage quality for elk ( Cervus canadensis )(Wiley, 2022-08) Paterson, J. Terrill; Proffitt, Kelly M.; DeCesare, Nicholas J.; Gude, Justin A.; Hebblewhite, MarkThe recovery of carnivore populations in North American has consequences for trophic interactions and population dynamics of prey. In addition to direct effects on prey populations through killing, predators can influence prey behavior by imposing the risk of predation. The mechanisms through which patterns of space use by predators are linked to behavioral response by prey and nonconsumptive effects on prey population dynamics are poorly understood. Our goal was to characterize population- and individual-level patterns of resource selection by elk (Cervus canadensis) in response to risk of wolves (Canis lupus) and mountain lions (Puma concolor) and evaluate potential nonconsumptive effects of these behavioral patterns. We tested the hypothesis that individual elk risk-avoidance behavior during summer would result in exposure to lower-quality forage and reduced body fat and pregnancy rates. First, we evaluated individuals' second-order and third-order resource selection with a used-available sampling design. At the population level, we found evidence for a positive relationship between second- and third-order selection and forage, and an interaction between forage quality and mountain lion risk such that the relative probability of use at low mountain lion risk increased with forage quality but decreased at high risk at both orders of selection. We found no evidence of a population-level trade-off between forage quality and wolf risk. However, we found substantial among-individual heterogeneity in resource selection patterns such that population-level patterns were potentially misleading. We found no evidence that the diversity of individual resource selection patterns varied predictably with available resources, or that patterns of individual risk-related resource selection translated into biologically meaningful changes in body fat or pregnancy rates. Our work highlights the importance of evaluating individual responses to predation risk and predator hunting technique when assessing responses to predators and suggests nonconsumptive effects are not operating at a population scale in this system.Item Responses of American black bears to spring resources(Wiley, 2021-11) Bowersock, Nathaniel R.; Litt, Andrea R.; Merkle, Jerod A.; Gunther, Kerry A.; van Manen, Frank T.In temperate regions of the world, food resources are seasonally limited, which causes some wildlife species to seek out nutrient-rich resources to better meet their caloric needs. Animals that utilize high-quality resources may reap fitness benefits as they prepare for mating, migration, or hibernation. American black bears (Ursus americanus) are omnivores that consume both plant and animal food resources to meet macronutrient needs. Black bears capitalize on high-quality food resources, such as soft mast in summer and hard mast during autumn, but we know less about the importance of resource quality during spring. Therefore, we sought to understand the relationship between the spatiotemporal variation in the availability of food and resource selection of black bears during spring. We also aimed to infer potential changes in foraging tactics, from opportunistic foraging to more active selection. Although black bears are described as opportunistic omnivores, we hypothesized they select areas with high-quality forage when available. We instrumented 7 black bears with GPS collars in 2017 and 2018 and estimated fine-scale resource selection with integrated step-selection functions. We found evidence that black bear movements were influenced by forage quality of vegetative food resources. However, we failed to find evidence that black bears actively alter their movements to take advantage of seasonal neonate elk. Although black bears represent a substantial cause of mortality for neonate elk, we found that black bears likely feed on neonates encountered opportunistically while traveling between patches of high-quality forage. Few studies have shown evidence of an omnivorous species capitalizing on spatiotemporal variation in forage quality, yet our data suggest this may be an important strategy for species with diverse diets, particularly where resources are seasonally limited.