Scholarly Work - Center for Biofilm Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Chickensplash! Exploring the health concerns of washing raw chicken
    (AIP Publishing, 2022-03) Carmody, Caitlin D.; Mueller, Rebecca C.; Grodner, Benjamin Michael; Chlumsky, Ondrej; Wilking, James N.; McCalla, Scott G.
    The Food and Drug Administration recommends against washing raw chicken due to the risk of transferring dangerous food-borne pathogens through splashed drops of water. Many cooks continue to wash raw chicken despite this warning, however, and there is a lack of scientific research assessing the extent of microbial transmission in splashed droplets. Here, we use large agar plates to confirm that bacteria can be transferred from the surface of raw chicken through splashing. We also identify and create a phylogenetic tree of the bacteria present on the chicken and the bacteria transferred during splashing. While no food-borne pathogens were identified, we note that organisms in the same genera as pathogens were transferred from the chicken surface through these droplets. Additionally, we show that faucet height, flow type, and surface stiffness play a role in splash height and distance. Using high-speed imaging to explore splashing causes, we find that increasing faucet height leads to a flow instability that can increase splashing. Furthermore, splashing from soft materials such as chicken can create a divot in the surface, leading to splashing under flow conditions that would not splash on a curved, hard surface. Thus, we conclude that washing raw chicken does risk pathogen transfer and cross-contamination through droplet ejection, and that changing washing conditions can increase or decrease the risk of splashing.
  • Thumbnail Image
    Item
    Evaluation of the Antimicrobial Efficacy of N-Acetyl-l-Cysteine, Rhamnolipids, and Usnic Acid—Novel Approaches to Fight Food-Borne Pathogens
    (MDPI, 2021) Chlumsky, Ondrej; Smith, Heidi J.; Parker, Albert E.; Brileya, Kristen; Wilking, James N.; Purkrtova, Sabina; Michova, Hana; Ulbrich, Pavel; Viktorova, Jitka; Demnerova, Katerina
    In the food industry, the increasing antimicrobial resistance of food-borne pathogens to conventional sanitizers poses the risk of food contamination and a decrease in product quality and safety. Therefore, we explored alternative antimicrobials N-Acetyl-L-cysteine (NAC), rhamnolipids (RLs), and usnic acid (UA) as a novel approach to prevent biofilm formation and reduce existing biofilms formed by important food-borne pathogens (three strains of Salmonella enterica and two strains of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus). Their effectiveness was evaluated by determining minimum inhibitory concentrations needed for inhibition of bacterial growth, biofilm formation, metabolic activity, and biofilm reduction. Transmission electron microscopy and confocal scanning laser microscopy followed by image analysis were used to visualize and quantify the impact of tested substances on both planktonic and biofilm-associated cells. The in vitro cytotoxicity of the substances was determined as a half-maximal inhibitory concentration in five different cell lines. The results indicate relatively low cytotoxic effects of NAC in comparison to RLs and UA. In addition, NAC inhibited bacterial growth for all strains, while RLs showed overall lower inhibition and UA inhibited only the growth of Gram-positive bacteria. Even though tested substances did not remove the biofilms, NAC represents a promising tool in biofilm prevention.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.