Scholarly Work - Center for Biofilm Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335
Browse
5 results
Search Results
Item Beyond the Surface: Non-Invasive Low-Field NMR Analysis of Microbially-Induced Calcium Carbonate Precipitation in Shale Fractures(Springer Science and Business Media LLC, 2024-07) Willet, Matthew R.; Bedey, Kayla; Crandall, Dustin; Seymour, Joseph D.; Rutqvist, Jonny; Cunningham, Alfred B.; Phillips, Adrienne J.; Kirkland, Catherine M.Microbially-induced calcium carbonate precipitation (MICP) is a biological process in which microbially-produced urease enzymes convert urea and calcium into solid calcium carbonate (CaCO3) deposits. MICP has been demonstrated to reduce permeability in shale fractures under elevated pressures, raising the possibility of applying this technology to enhance shale reservoir storage safety. For this and other applications to become a reality, non-invasive tools are needed to determine how effectively MICP seals shale fractures at subsurface temperatures. In this study, two different MICP strategies were tested on 2.54 cm diameter and 5.08 cm long shale cores with a single fracture at 60 ℃. Flow-through, pulsed-flow MICP-treatment was repeatedly applied to Marcellus shale fractures with and without sand (“proppant”) until reaching approximately four orders of magnitude reduction in apparent permeability, while a single application of polymer-based “immersion” MICP-treatment was applied to an Eagle Ford shale fracture with proppant. Low-field nuclear magnetic resonance (LF-NMR) and X-Ray computed microtomography (micro-CT) techniques were used to assess the degree of biomineralization. With the flow-through approach, these tools revealed that while CaCO3 precipitation occurred throughout the fracture, there was preferential precipitation around proppant. Without proppant, the same approach led to premature sealing at the inlet side of the core. In contrast, immersion MICP-treatment sealed off the fracture edges and showed less mineral precipitation overall. This study highlights the use of LF-NMR relaxometry in characterizing fracture sealing and can help guide NMR logging tools in subsurface remediation efforts.Item Ureolysis-induced calcium carbonate precipitation (UICP) in the presence of CO2-affected brine: A field demonstration(Elsevier BV, 2021-07) Kirkland, Catherine M.; Akyel, Arda; Hiebert, Randy; McCloskey, JayBiomineralization is an emerging biotechnology for subsurface engineering applications like remediating leaky wellbores. The process relies on ureolysis to induce precipitation of calcium carbonate in undesired flow paths. In geologic storage of CO2, there is a potential for leakage and low pH conditions, thus, ureolysis-induced calcium carbonate precipitation (UICP) was tested at field scale to seal a channel in the wellbore cement annulus in the presence of CO2-affected brine. Conventional oil field methods were used to deliver UICP-promoting fluids downhole to the treatment zone approximately 1000 feet (305 m) below ground surface (bgs). Over 4 days, 242 L (64 gal) of heat-treated Sporosarcina pasteurii cultures (22 bailers) and 329 L (87 gal) of urea – calcium chloride solution (30 bailers) were injected. The UICP treatment resulted in a 94% reduction of injectivity and ultrasonic well logging showed a noticeable increase in the percentage of solids in the channel outside the casing, including more than 30 m (100 ft) above the injection point. Subsequent well logging 11 months after the field demonstration showed that a significant portion of the new solids remained but the seal was compromised following sustained pumping. The results of this experiment suggest that UICP can be promoted in the presence of CO2-affected brine to seal leakage pathways. Additional research is required to optimize long term seal integrity to ensure storage of CO2 in geologic carbon sequestration scenarios.Item Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): A field demonstration(Elsevier BV, 2020-02) Kirkland, Catherine M.; Thane, Abby; Hiebert, Randy; Hyatt, Robert; Kirksey, Jim; Cunningham, Alfred B.; Gerlach, Robin; Spangler, Lee; Philips, Adrienne J.Microbially-induced calcium carbonate precipitation (MICP) is an emerging biotechnology for wellbore integrity applications including sealing defects in wellbore cement and modifying the permeability of rock formations. The goal of this field demonstration was to characterize a failed waterflood injection well and provide proof of principle that MICP can reduce permeability in the presence of oil using conventional oilfield fluid delivery methods. We compared well logs performed at the time the well was drilled with ultrasonic logs, sonic cement evaluation, and temperature logs conducted after the well failed. Analysis of these logs suggested that, rather than entering the target waterflood formation, injectate was traveling through defects in the well cement to a higher permeability sandstone layer above the target formation. Sporosarcina pasteurii cultures and urea-calcium media were delivered 2290 ft (698 m) below ground surface using a 3.75 gal (14.2 L) slickline dump bailer to promote mineralization in the undesired flow paths. By Day 6 and after 25 inoculum and 49 calcium media injections, the injectivity [gpm/psi] had decreased by approximately 70%. This demonstration shows that 1) common well logs can be used to identify scenarios where MICP can be employed to reduce system permeability, remediate leakage pathways, and improve waterflood efficiency, and 2) MICP can occur in the presence of hydrocarbons.Item Characterizing the structure of aerobic granular sludge using ultra-high field magnetic resonance(IWA Publishing, 2020-08) Kirkland, Catherine M.; Krug, Julia R.; Vergeldt, Frank J.; van den Berg, Lenno; Velders, Aldrik H.; Seymour, Joseph D.; Codd, Sarah L.; Van As, Henk; de Kreuk, Merle K.Despite aerobic granular sludge wastewater treatment plants operating around the world, our understanding of internal granule structure and its relation to treatment efficiency remains limited. This can be attributed in part to the drawbacks of time-consuming, labor-intensive, and invasive microscopy protocols which effectively restrict samples sizes and may introduce artefacts. Timedomain nuclear magnetic resonance (NMR) allows non-invasive measurements which describe internal structural features of opaque, complex materials like biofilms. NMR was used to image aerobic granules collected from five full-scale wastewater treatment plants in the Netherlands and United States, as well as laboratory granules and control beads. T1 and T2 relaxation-weighted images reveal heterogeneous structures that include high- and low-density biofilm regions, waterlike voids, and solid-like inclusions. Channels larger than approximately 50 μm and connected to the bulk fluid were not visible. Both cluster and ring-like structures were observed with each granule source having a characteristic structural type. These structures, and their NMR relaxation behavior, were stable over several months of storage. These observations reveal the complex structures within aerobic granules from a range of sources and highlight the need for non-invasive characterization methods like NMR to be applied in the ongoing effort to correlate structure and function.Item Heterogeneous diffusion in aerobic granular sludge(Wiley, 2020-08) van den Berg, Lenno; Kirkland, Catherine M.; Seymour, Joseph D.; Codd, Sarah L.; Van Loosdrecht, Mark C. M.; de Kreuk, Merle K.Aerobic granular sludge (AGS) technology allows simultaneous nitrogen, phosphorus, and carbon removal in compact wastewater treatment processes. To operate, design, and model AGS reactors, it is essential to properly understand the diffusive transport within the granules. In this study, diffusive mass transfer within full‐scale and lab‐scale AGS was characterized with nuclear magnetic resonance (NMR) methods. Self‐diffusion coefficients of water inside the granules were determined with pulsed‐field gradient NMR, while the granule structure was visualized with NMR imaging. A reaction‐diffusion granule‐scale model was set up to evaluate the impact of heterogeneous diffusion on granule performance. The self‐diffusion coefficient of water in AGS was ∼70% of the self‐diffusion coefficient of free water. There was no significant difference between self‐diffusion in AGS from full‐scale treatment plants and from lab‐scale reactors. The results of the model showed that diffusional heterogeneity did not lead to a major change of flux into the granule (<1%). This study shows that differences between granular sludges and heterogeneity within granules have little impact on the kinetic properties of AGS. Thus, a relatively simple approach is sufficient to describe mass transport by diffusion into the granules.