Scholarly Work - Center for Biofilm Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335

Browse

Search Results

Now showing 1 - 10 of 21
  • Thumbnail Image
    Item
    Color measurement as a means of quantifying surface biofouling
    (1998-11) Pitts, Betsey; Hamilton, Martin A.; McFeters, Gordon A.; Stewart, Philip S.; Willse, Alan Ray; Zelver, Nick
    Laboratory reactors fitted with removable ceramic porcelain growth surfaces were inoculated with a consortium of biofilm forming environmental isolates. A Minolta colorimeter CR-200 (Minolta Camera Co., Ltd, Ramsey, NJ) was used in conjunction with a specially designed adapter to evaluate the reflective color of the porcelain disks as biofilm accumulated on them. Areal viable cell counts were monitored over a period of eleven days in two separate experiments and direct color measurements of the untreated, microbially fouled test surfaces were collected. This colorimetric assay was both non-destructive and immediate. A strong linear relationship between log cell density and log color change was observed. The Pearson product moment correlation coefficient for all 45 observations combined was r=0.95. Separate regression lines for each experiment were not significantly different (P=0.19). When adjusted for time, the (partial) correlation coefficient between log cell density and log color change was r=0.87, which suggests that the relationship between the two measures can not be explained by their mutual dependence on time. Reflective color measurement provided a rapid, non-destructive and quantitative measure of biofilm accumulation.
  • Thumbnail Image
    Item
    Bacterial characterization of toilet bowl biofilms
    (1998-08) Pitts, Betsey; Stewart, Philip S.; McFeters, Gordon A.; Hamilton, Martin A.; Willse, Alan Ray; Zelver, Nick
    Methods have been developed and applied for sampling, characterizing and quantifying naturally occurring toilet bowl biofilms. Ceramic porcelain disks mounted in neoprene rubber strips were sealed in place in toilet bowls in three residences in Bozeman, Montana. In each bowl, duplicate strips were placed above, at and below the water level. In 7 consecutive weeks, duplicate disks from each zone in each bowl were removed. Surface biofouling was measured by viable cell areal density. Specific fouling rates were calculated and variability among toilet bowls and water levels was assessed. Specific fouling rates ranged from 0.0 to 0.46d‐1. Average areal cell densities at the end of 7 weeks ranged from 103 to 107cfu cm‐2. The extent of fouling was highest below the water line. Neutralization of the chlorine residual (typically 0.9 mg l‐1) in one toilet did not increase the extent of fouling compared to the controls. Biofilm areal viable cell densities and bowl water viable counts were positively correlated (r = 0.78). The visual threshold for detection of toilet bowl biofilm by the naked eye was approximately 105 cfu cm‐2. In a heavily fouled toilet bowl, the biofilm was up to 20 μm thick. Microorganisms were isolated from the biofilm and identified. Of the 32 organisms that were further characterized, 10 were identified as Pseudomonas, Sphingomonas or Chryseomonas species.
  • Thumbnail Image
    Item
    Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability
    (1998-10) Xu, Karen D.; Stewart, Philip S.; Xia, Fuhu; Huang, Ching-Tsan; McFeters, Gordon A.
  • Thumbnail Image
    Item
    The study of microbial biofilms by classical fluorescence microscopy
    (1998) Huang, Ching-Tsan; Stewart, Philip S.; McFeters, Gordon A.
  • Thumbnail Image
    Item
    Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation
    (1998-04) Huang, Ching-Tsan; Xu, Karen D.; McFeters, Gordon A.; Stewart, Philip S.
    The expression of alkaline phosphatase in response to phosphate starvation was shown to be spatially and temporally heterogeneous in bacterial biofilms and colonies. A commercial alkaline phosphatase substrate that generates a fluorescent, insoluble product was used in conjunction with frozen sectioning techniques to visualize spatial patterns of enzyme expression in both Klebsiella pneumoniae and Pseudomonas aeruginosa biofilms. Some of the expression patterns observed revealed alkaline phosphatase activity at the boundary of the biofilm opposite the place where the staining substrate was delivered, indicating that the enzyme substrate penetrated the biofilm fully. Alkaline phosphatase accumulated linearly with time in K. pneumoniae colonies transferred from high-phosphate medium to low-phosphate medium up to specific activities of 50 μmol per min per mg of protein after 24 h. In K. pneumoniae biofilms and colonies, alkaline phosphatase was initially expressed in the region of the biofilm immediately adjacent to the carbon and energy source (glucose). In time, the region of alkaline phosphatase expression expanded inward until it spanned most, but not all, of the biofilm or colony depth. In contrast, expression of alkaline phosphatase in P. aeruginosa biofilms occurred in a thin, sharply delineated band at the biofilm-bulk fluid interface. In this case, the band of activity never occupied more than approximately one-sixth of the biofilm. These results are consistent with the working hypothesis that alkaline phosphatase expression patterns are primarily controlled by the local availability of either the carbon and energy source or the electron acceptor.
  • Thumbnail Image
    Item
    Fluorescent probes applied to the physiological characterization of bacterial biofilms
    (1999) Lisle, John T.; Stewart, Philip S.; McFeters, Gordon A.
  • Thumbnail Image
    Item
    Evaluation of physiological staining, cryoembedding and autofluorescence quenching techniques on fouling biofilms
    (1996-07) Huang, Ching-Tsan; McFeters, Gordon A.; Stewart, Philip S.
    Physiological staining, cryoembedding, cryosectioning and autoftuorescence quenching techniques were evaluated for their applicability to undefined mixed population biofilms collected from environmental or engineered systems. Four different biofilms from two cooling towers, a paper mill machine and the effluent ditch of a wastewater treatment plant were tested. The redox dye 5‐cyano‐2,3‐ditolyl tetrazolium chloride (CTC) was used in combination with the DNA stain 4’,6‐diamino‐2‐phenylindole (DAPI) to distinguish respiring and nonrespiring cells. Positive CTC staining, as evidenced by the development of pink or red color, was successful in all samples examined except for paper mill biofilm. The structural integrity of frozen sections deteriorated when biofilms contained rigid or fibrous material. Autofluorescence generally impaired the ability to distinguish specific staining from natural background fluorescence. Two physical and three chemical methods were tested to quench autofluorescence. Quenching with crystal violet reduced most of the autofluorescent interference and still maintained physiological staining intensity, but contrast between CTC staining and residual autofluorescence was poor. Autofluorescence and the difficulty of sectioning thick biofilms containing abiotic materials limit the applicability of cryoembedding/staining techniques to fouling biofilms.
  • Thumbnail Image
    Item
    Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm
    (1996-06) Wentland, Eric Jon; Stewart, Philip S.; Huang, Ching-Tsan; McFeters, Gordon A.
    The use of acridine orange to visualize and quantify spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm was investigated. Bacterial colonies supported on polycarbonate filter membranes were grown on R2A agar plates. Some colonies were sampled for cell enumeration, while others were cryoembedded, sectioned, and stained with the fluorescent nucleic acid stain acridine orange. Spatial patterns of fluorescent color and intensity with depth in the colony were quantified using confocal microscopy and image analysis of stained cross sections. Colonies sampled in the midexponential phase were thin (20 μm), had high average specific growth rates (>1 h−1), and had all the cells stained bright orange. Colonies sampled after more than 24 h of growth were thick (>200 μm) and were growing slowly (μ < 0.15 h−1). These older colonies were characterized by distinct bands of orange at the colony edges and a dark green center. Stained biofilm cross sections displayed a similar orange band at the biofilm−bulk fluid interface and a green interior. Colony-average specific growth rates, determined by calculating the local slope of the cell accumulation versus time data, were correlated with colony-average fluorescence intensities. There was no correlation betweeen average specific growth rate and orange or green intensity individually, but growth rate did correlate with the orange:green intensity ratio (r2 = 0.57). The resulting regression was used to predict specific growth rate profiles within colonies. These profiles indicated that bacteria were growing rapidly near the air and agar interfaces and more slowly in the center of the colonies when thicker than about 30 μm. The dimension of the orange bands ranged from 10 to 30 μm, which may indicate the thickness of growing regions. The inherent variability associated with this technique suggests that it is best applied in single species systems and that the results should be regarded as qualitative in nature.
  • Thumbnail Image
    Item
    Physiological methods to study biofilm disinfection
    (1995-10) McFeters, Gordon A.; Yu, Feipeng Philip; Pyle, Barry H.; Stewart, Philip S.
    This report reviews the development of a rapidin situ approach to study the physiological responses of bacteria within biofilms to disinfectants. One method utilized direct viable counts (DVC) to assess the disinfection efficacy when thin biofilms were exposed to chlorine or monochloramine. Results obtained using the DVC method were one log higher than plate count (PC) estimates of the surviving population after disinfection. Other methods incorporated the use of fluorogenic stains, a cryotomy technique to yield thin (5-μm) sections of biofilm communities and examination by fluorescence microscopy. The fluorogenic stains used in this approach included 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), which indicates cellular electron transport activity and Rhodamine 123, which responds specifically to proton motive force. The use of these stains allowed the microscopic discrimination of physiologically active bacteria as well as heterogeneities of active cells within thicker biofilms. The results of experiments using these techniques with pure culture and binary population biofilms on stainless steel coupons indicated biocidal activity of chlorine-based disinfectants occurred initially at the bulk-fluid interface of the communities and progressed toward the substratum. This approach provided a unique opportunity to describe the spatial response of bacteria within biofilms to antimicrobial agents and address mechanisms explaining their comparative resistance to disinfection in a way that has not been possible using traditional approaches. Results obtained using this alternative approach were also consistently higher than PC data following disinfection. These observations suggest that traditional methods involving biofilm removal and bacterial enumeration by colony formation overestimate biocide efficacy. Hence the alternative approach described here more accurately indicates the ability of bacteria surviving disinfection to recover and grow as well as demonstrate spatial heterogeneities in cellular physiological activities within biofilms.
  • Thumbnail Image
    Item
    Nonuniform spatial patterns of respiratory activity within biofilms during disinfection
    (1995-06) Huang, Ching-Tsan; Yu, Feipeng Philip; McFeters, Gordon A.; Stewart, Philip S.
    Fluorescent stains in conjunction with cryoembedding and image analysis were applied to demonstrate spatial gradients in respiratory activity within bacterial biofilms during disinfection with monochloramine. Biofilms of Klebsiella pneumoniae and Pseudomonas aeruginosa grown together on stainless steel surfaces in continuous-flow annular reactors were treated with 2 mg of monochloramine per liter (influent concentration) for 2 h. Relatively little biofilm removal occurred as evidenced by total cell direct counts. Plate counts (of both species summed) indicated an average 1.3-log decrease after exposure to 2 mg of monochloramine per liter. The fluorogenic redox indicator 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and the DNA stain 4*,6-diamidino2-phenylindole (DAPI) were used to differentiate respiring and nonrespiring cells in biofilms. Epifluorescence micrographs of frozen biofilm cross sections clearly revealed gradients of respiratory activity within biofilms in response to monochloramine treatment. These gradients in specific respiratory activity were quantified by calculating the ratio of CTC and DAPI intensities measured by image analysis. Cells near the biofilm-bulk fluid interface lost respiratory activity first. After 2 h of biocide treatment, greater respiratory activity persisted deep in the biofilm than near the biofilm-bulk fluid interface.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.