Scholarly Work - Center for Biofilm Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335
Browse
53 results
Search Results
Item Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii(2013-01) Gardner, Robert D.; Lohman, Egan J.; Gerlach, Robin; Cooksey, Keith E.; Peyton, Brent M.Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated because these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO2 (5%;v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO2 (0.04%;v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage.Item Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms(2013-01) Faulwetter, J. L.; Burr, Mark D.; Parker, Albert E.; Stein, Otto R.; Camper, Anne K.Constructed wetlands offer an effective means for treatment of wastewater from a variety of sources. An understanding of the microbial ecology controlling nitrogen, carbon and sulfur cycles in constructed wetlands has been identified as the greatest gap for optimizing performance of these promising treatment systems. It is suspected that operational factors such as plant types and hydraulic operation influence the subsurface wetland environment, especially redox, and that the observed variation in effluent quality is due to shifts in the microbial populations and/or their activity. This study investigated the biofilm associated sulfate reducing bacteria and ammonia oxidizing bacteria (using the dsrB and amoA genes, respectively) by examining a variety of surfaces within a model wetland (gravel, thick roots, fine roots, effluent), and the changes in activity (gene abundance) of these functional groups as influenced by plant species and season. Molecular techniques were used including quantitative PCR and denaturing gradient gel electrophoresis (DGGE), both with and without propidium monoazide (PMA) treatment. PMA treatment is a method for excluding from further analysis those cells with compromised membranes. Rigorous statistical analysis showed an interaction between the abundance of these two functional groups with the type of plant and season (p<0.05). The richness of the sulfate reducing bacterial community, as indicated by DGGE profiles, increased in planted vs. unplanted microcosms. For ammonia oxidizing bacteria, season had the greatest impact on gene abundance and diversity (higher in summer than in winter). Overall, the primary influence of plant presence is believed to be related to root oxygen loss and its effect on rhizosphere redox.Item Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation(2013-01) Phillips, Adrienne J.; Lauchnor, Ellen G.; Eldring, Joseph; Esposito, R.; Mitchell, Andrew C.; Gerlach, Robin; Cunningham, Alfred B.; Spangler, Lee H.Mitigation strategies for sealing high permeability regions in cap rocks, such as fractures or improperly abandoned wells, are important considerations in the long term security of geologically stored carbon dioxide (CO2). Sealing technologies using low-viscosity fluids are advantageous in this context since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. Using aqueous solutions and suspensions that can effectively promote microbially induced mineral precipitation is one such technology. Here we describe a strategy to homogenously distribute biofilm-induced calcium carbonate (CaCO3) precipitates in a 61 cm long sandfilled column and to seal a hydraulically fractured, 74 cm diameter Boyles Sandstone core. Sporosarcina pasteurii biofilms were established and an injection strategy developed to optimize CaCO3 precipitation induced via microbial urea hydrolysis. Over the duration of the experiments, permeability decreased between 2 and 4 orders of magnitude in sand column and fractured core experiments, respectively. Additionally, after fracture sealing, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest biofilm-induced CaCO3 precipitation technologies may potentially seal and strengthen fractures to mitigate CO2 leakage potential.Item Biofilm detection in natural unconsolidated porous media using a low-field magnetic resonance system(2013-04) Sanderlin, A. B.; Vogt, Sarah J.; Grunewald, E.; Bergin, B. A.; Codd, Sarah L.The extent to which T2 relaxation measurements can be used to determine biofouling in several natural geological sand media using a low-field (275 kHz, 6.5 mT) NMR system has been demonstrated. It has been previously shown that, at high laboratory strength fields (300 MHz, 7 T), T2 techniques can be used as a bioassay to confirm the growth of biofilm inside opaque porous media with low magnetic susceptibilities such as borosilicate or soda lime glass beads. Additionally decreases in T2 can be associated with intact biofilm as opposed to degraded biofilm material. However, in natural geological media, the strong susceptibility gradients generated at high fields dominated the T2 relaxation time distributions and biofilm growth could not be reliably detected. Samples studied included Bacillus mojavensis biofilm in several sand types, as well as alginate solution and alginate gel in several sand types. One of the sand types was highly magnetic. Data was collected with a low-field (275 kHz, 6.5 mT) benchtop NMR system using a CPMG sequence with an echo time of 1.25 ms providing the ability to detect signals with T2 greater than 1 ms. Data presented here clearly demonstrate that biofilm can be reliably detected and monitored in highly magnetically susceptible geological samples using a low-field NMR spectrometer indicating that low-field NMR could be viable as a biofilm sensor at bioremedation sites.Item Microbial community structure and sulfur biogeochemistry in mildly acidic sulfidic geothermal springs in Yellowstone National Park(2013-01) Macur, Richard E.; Jay, Zackary J.; Taylor, William P.; Kozubal, Mark A.; Kocar, Benjamin D.; Inskeep, William P.Geothermal and hydrothermal waters often contain high concentrations of dissolved sulfide, which reacts with oxygen (abiotically or biotically) to yield elemental sulfur and other sulfur species that may support microbial metabolism. The primary goal of this study was to elucidate predominant biogeochemical processes important in sulfur biogeochemistry by identifying predominant sulfur species and describing microbial community structure within high-temperature, hypoxic, sulfur sediments ranging in pH from 4.2 to 6.1. Detailed analysis of aqueous species and solid phases present in hypoxic sulfur sediments revealed unique habitats containing high concentrations of dissolved sulfide, thiosulfate, and arsenite, as well as rhombohedral and spherical elemental sulfur and/or sulfide phases such as orpiment, stibnite, and pyrite, as well as alunite and quartz. Results from 16S rRNA gene sequencing show that these sediments are dominated by Crenarchaeota of the orders Desulfurococcales and Thermoproteales. Numerous cultivated representatives of these lineages, as well as the Thermoproteales strain (WP30) isolated in this study, require complex sources of carbon and respire elemental sulfur. We describe a new archaeal isolate (strain WP30) belonging to the order Thermoproteales (phylum Crenarchaeota, 98% identity to Pyrobaculum/Thermoproteus spp. 16S rRNA genes), which was obtained from sulfur sediments using in situ geochemical composition to design cultivation medium. This isolate produces sulfide during growth, which further promotes the formation of sulfide phases including orpiment, stibnite, or pyrite, depending on solution conditions. Geochemical, molecular, and physiological data were integrated to suggest primary factors controlling microbial community structure and function in high-temperature sulfur sediments.Item Iron induces bimodal population development by Escherichia coli(2013-01) DePas, W. H.; Hufnagel, D. A.; Lee, J. S.; Blanco, L. P.; Bernstein, Hans C.; Fisher, Steve T.; James, Garth A.; Stewart, Philip S.; Chapman, M. R.Bacterial biofilm formation is a complex developmental process involving cellular differentiation and the formation of intricate 3D structures. Here we demonstrate that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium. Two unique and separable cellular populations emerge in iron-triggered, rugose biofilms. Bacteria at the air–biofilm interface express high levels of the biofilm regulator csgD, the cellulose activator adrA, and the curli subunit operon csgBAC. Bacteria in the interior of rugose biofilms express low levels of csgD and undetectable levels of matrix components curli and cellulose. Iron activation of rugose biofilms is linked to oxidative stress. Superoxide generation, either through addition of phenazine methosulfate or by deletion of sodA and sodB, stimulates rugose biofilm formation in the absence of high iron. Additionally, overexpression of Mn-superoxide dismutase, which can mitigate iron-derived reactive oxygen stress, decreases biofilm formation in a WT strain upon iron exposure. Not only does reactive oxygen stress promote rugose biofilm formation, but bacteria in the rugose biofilms display increased resistance to H2O2 toxicity. Altogether, we demonstrate that iron and superoxide stress trigger rugose biofilm formation in UTI89. Rugose biofilm development involves the elaboration of two distinct bacterial populations and increased resistance to oxidative stress.Item Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid(2013-02) Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24-hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.Item Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system(2013-02) Lauchnor, Ellen G.; Schultz, Logan N.; Bugni, S.; Mitchell, Andrew C.; Cunningham, Alfred B.; Gerlach, RobinStrontium-90 is a principal radionuclide contaminant in the subsurface at several Department of Energy sites in the Western U.S., causing a threat to groundwater quality in areas such as Hanford, WA. In this work, we used laboratory-scale porous media flow cells to examine a potential remediation strategy employing coprecipitation of strontium in carbonate minerals. CaCO3 precipitation and strontium coprecipitation were induced via ureolysis by Sporosarcina pasteurii in two-dimensional porous media reactors. An injection strategy using pulsed injection of calcium mineralization medium was tested against a continuous injection strategy. The pulsed injection strategy involved periods of lowered calcite saturation index combined with short high fluid velocity flow periods of calcium mineralization medium followed by stagnation (no-flow) periods to promote homogeneous CaCO3 precipitation. By alternating the addition of mineralization and growth media the pulsed strategy promoted CaCO3 precipitation while sustaining the ureolytic culture over time. Both injection strategies achieved ureolysis with subsequent CaCO3 precipitation and strontium coprecipitation. The pulsed injection strategy precipitated 71−85% of calcium and 59% of strontium, while the continuous injection was less efficient and precipitated 61% of calcium and 56% of strontium. Over the 60-day operation of the pulsed reactors, ureolysis was continually observed, suggesting that the balance between growth and precipitation phases allowed for continued cell viability. Our results support the pulsed injection strategy as a viable option for ureolysis-induced strontium coprecipitation because it may reduce the likelihood of injection well accumulation caused by localized mineral plugging while Sr coprecipitation efficiency is maintained in field-scale applications.Item Abandoned well CO2 leakage mitigation using biologically induced mineralization: Current progress and future directions(2013-02) Cunningham, Alfred B.Methods of mitigating leakage or re-plugging abandoned wells before exposure to CO2are of high potential interest to prevent leakage of CO2 injected for geologic carbon sequestration in depleted oil and gas reservoirs where large numbers of abandoned wells are often present. While CO2resistant cements and ultrafine cements are being developed, technologies that can be delivered via low viscosity fluids could have significant advantages including the ability to plug small aperture leaks such as fractures or delamination interfaces. Additionally there is the potential to plug rock formation pore space around the wellbore in particularly problematic situations. We are carrying out research on the use of microbial biofilms capable of inducing the precipitation of crystalline calcium carbonate using the process of ureolysis. This method has the potential to reduce well bore permeability, coat cement to reduce CO2–related corrosion, and lower the risk of unwanted upward CO2 migration. In this spotlight, we highlight research currently underway at the Center for Biofilm Engineering (CBE) at Montana State University (MSU) in the area of ureolytic biomineralization sealing for reducing CO2 leakage risk. This research program combines two novel core testing systems and a 3-dimensional simulation model to investigate biomineralization under both radial and axial flow conditions and at temperatures and pressures which permit CO2 to exist in the supercritical state.This combination of modeling and experimentation is ultimately aimed at developing and verifying biomineralization sealing technologies and strategies which can successfully be applied at the field scale for carbon capture and geological storage (CCGS) projects.Item Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides(2013-01) Stewart, B. D.; Giradot, Crystal L.; Spycher, Nicolas; Sani, Rajesh K.; Peyton, Brent M.Microbially mediated reduction of soluble U(VI) to U(IV) with subsequent precipitation of uraninite, UO2(S), has been proposed as a method for limiting uranium (U) migration. However, microbially reduced UO2 may be susceptible to reoxidation by environmental factors, with Fe(III) (hydr)oxides playing a significant role. Little is known about the role that organic compounds such as Fe(III) chelators play in the stability of reduced U. Here, we investigate the impact of citrate, DFB, EDTA, and NTA on biogenic UO2 reoxidation with ferrihydrite, goethite, and hematite. Experiments were conducted in anaerobic batch systems in PIPES buffer (10 mM, pH 7) with bicarbonate for approximately 80 days. Results showed EDTA accelerated UO2 reoxidation the most at an initial rate of 9.5 μM day−1 with ferrihydrite, 8.6 μM day−1 with goethite, and 8.8 μM day−1 with hematite. NTA accelerated UO2 reoxidation with ferrihydrite at a rate of 4.8 μM day−1; rates were less with goethite and hematite (0.66 and 0.71 μM day−1, respectively). Citrate increased UO2 reoxidation with ferrihydrite at a rate of 1.8 μM day−1, but did not increase the extent of reaction with goethite or hematite, with no reoxidation in this case. In all cases, bicarbonate increased the rate and extent of UO2 reoxidation with ferrihydrite in the presence and absence of chelators. The highest rate of UO2 reoxidation occurred when the chelator promoted both UO2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO2 dissolution did not occur, UO2 reoxidation likely proceeded through an aqueous Fe(III) intermediate with lower reoxidation rates observed. Reaction modeling suggests that strong Fe(II) chelators promote reoxidation whereas strong Fe(III) chelators impede it. These results indicate that chelators found in U contaminated sites may play a significant role in mobilizing U, potentially affecting bioremediation efforts.