Scholarly Work - Earth Sciences
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8747
Browse
2 results
Search Results
Item Reconciling petrologic magma ascent speedometers for the June 12th, 1991 eruption of Mt. Pinatubo, Philippines(Volcanica, 2024-03) Harris, Megan; Hosseini, Behnaz; Myers, Madison; Bouley, LoganWe investigate whether decompression rates derived from three often-disparate petrologic techniques (microlites, bubbles, and melt embayments) can be reconciled or integrated for a more complete understanding of magma ascent in the conduit. We focus on the well-studied and -documented earliest Plinian eruptions (June 12, 1991) of Mount Pinatubo. Using a newly developed two-stage decompression-diffusion model, volatile profiles in quartz-hosted embayments reveal an initial stage of decompression nearly two orders of magnitude slower than final rates. In applying time-integrated models of microlite and bubble nucleation and growth, initial decompression rates from embayments are supported by microlite modeling results, whereas final rates are in close agreement with bubble number densities. This consistency and continuity between speedometers supports the sensitivity of different petrologic recorders to specific regions of the conduit system and highlights the fidelity of embayments as recorders of decompression throughout the entire conduit. Ascent timescales derived from Pinatubo embayments range from hours to days, coinciding with the visual onset of lava effusion leading to explosive activity.Item Outgassing through magmatic fractures enables effusive eruption of silicic magma(Elsevier BV, 2022-10) Crozier, Josh; Tramontano, Samantha; Forte, Pablo; Oliva, Sarah Jaye C.; Gonnermann, Helge M.; Lev, Einat; Manga, Michael; Myers, Madison; Rader, Erika; Ruprecht, Philipp; Tuffen, Hugh; Paisley, Rebecca; Houghton, Bruce F.; Shea, Thomas; Schipper, C. Ian; Castro, Jonathan M.Several mechanisms have been proposed to allow highly viscous silicic magma to outgas efficiently enough to erupt effusively. There is increasing evidence that challenges the classic foam-collapse model in which gas escapes through permeable bubble networks, and instead suggests that magmatic fracturing and/or accompanying localized fragmentation and welding within the conduit play an important role in outgassing. The 2011–2012 eruption at Cordón Caulle volcano, Chile, provides direct observations of the role of magmatic fractures. This eruption exhibited a months-long hybrid phase, in which rhyolitic lava extrusion was accompanied by vigorous gas-and-tephra venting through fractures in the lava dome surface. Some of these fractures were preserved as tuffisites (tephra-filled veins) in erupted lava and bombs. We integrate constraints from petrologic analyses of erupted products and video analyses of gas-and-tephra venting to construct a model for magma ascent in a conduit. The one-dimensional, two-phase, steady-state model considers outgassing through deforming permeable bubble networks, magmatic fractures, and adjacent wall rock. Simulations for a range of plausible magma ascent conditions indicate that the eruption of low-porosity lava observed at Cordón Caulle volcano occurs because of significant gas flux through fracture networks in the upper conduit. This modeling emphasizes the important role that outgassing through magmatic fractures plays in sustaining effusive or hybrid eruptions of silicic magma and in facilitating explosive-effusive transitions.