Scholarly Work - Plant Sciences & Plant Pathology
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8870
Browse
Item A 200-year history of arctic and alpine fungi in North America: Early sailing expeditions to the molecular era(2020) Noffsinger, Chance; Cripps, Cathy L.; Horak, EgonMushrooms and other fleshy fungi are important components of arctic and alpine habitats where they enhance nutrient uptake in plants and replenish poor soils through decomposition. Here we assemble the 200-year (1819–2019) record of their discovery in North America, beginning with early Arctic sailing expeditions, followed by intense taxonomic studies, and concluding with the molecular era, all of which highlight the difficulty of exhaustively revealing their biodiversity in these extreme, cold-dominated habitats. Compiled biogeographic data reveal that a majority of arctic fungi have large intercontinental distributions with disjunct alpine populations. A newly compiled checklist of 170 species of Basidiomycota in fifty-one genera and twenty families in the Rocky Mountain alpine zone provides current baseline data prior to expected environmental shifts.Item 3-Carbamoylquinoxalin-1-ium chloride(2011-12) Harper, James K.; Strobel, Gary A.; Arif, Atta M.The title compound, C9H8N3O+·Cl-, was isolated from a liquid culture of streptomyces sp. In the cation, the ring system makes a dihedral angle of 0.2 (2)° with the amide group. The protonation creating the cation occurs at ome of the N atoms in the quinoxaline ring system. In the crystal, the ions are linked through N-H...O and N-H...Cl hydrogen bonds, forming a two-dimensional network parallel to (10\overline{3}).Item (6 S *)-6-[(1 S *,2 R *)-1,2-Dihydroxypentyl]-4-methoxy-5,6-dihydro-2 H -pyran-2-one(2013-10) Valenti, Domenic J.; Arif, Atta M.; Strobel, Gary A.; Harper, James K.The title compound, C11H18O5, was isolated from a liquid culture of Pestalotiopsis sp. In the molecule, the pyran-2-one ring assumes a half-chair conformation. The two terminal C atoms of the pentyl group were refined as disordered over two sets of sites, with refined occupancies of 0.881 (10) and 0.119 (10). In the crystal, molecules are linked via O-H...O hydrogen bonds forming a three-dimensional network.Item A Comprehensive Assessment of Verticillium Wilt of Potato: Present Status and Future Prospective(EScience Press, 2023-06) KC, Shreejana; Poudel, Amrit; Oli, Dipiza; Ghimire, Shirish; Angon Bishnu, Prodipto; Shafiul Islam, MDThe fungal disease Verticillium wilt is a soil-borne pathogen that is caused by Verticillium dahliae. This disease affects a wide range of crops and can cause significant yield losses. Recent findings suggest that Verticillium wilt has been affecting potato crops in abundant domains around the global world, including in North America, parts of Europe, and Asia. In some cases, the disease has been observed in fields where it has not been previously reported, indicating that it has been spreading. Farmers and researchers are working to manage the disease through a variety of measures, including rotation of crops, the use of resistant varieties of potato developed from resistant strains, and the application of fungicides. However, the potency of these measures can vary depending on the ferocity of the disease and the local growing circumstances. Overall, the recent findings of Verticillium wilt in potato underscore the importance of continued monitoring and research to better understand the disease and develop effective management strategies. This review has highlighted the up-to-date information on Verticillium wilt and management strategies. The study also helps the scientific community understand this devastating plant disease by offering a thorough review of the situation.Item Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses(2016-04) McMenamin, Alexander J.; Brutscher, Laura M.; Glenny, William; Flenniken, Michelle L.Bees are important pollinators of plants in both agricultural and non-agricultural landscapes. Recent losses of both managed and wild bee species have negative impacts on crop production and ecosystem diversity. Therefore, in order to mitigate bee losses, it is important to identify the factors most responsible. Multiple factors including pathogens, agrochemical exposure, lack of quality forage, and reduced habitat affect bee health. Pathogen prevalence is one factor that has been associated with colony losses. Numerous pathogens infect bees including fungi, protists, bacteria, and viruses, the majority of which are RNA viruses including several that infect multiple bee species. RNA viruses readily infect bees, yet there is limited understanding of their impacts on bee health, particularly in the context of other stressors. Herein we review the influence environmental factors have on the replication and pathogenicity of bee viruses and identify research areas that require further investigation.Item Abiotic stress miRNomes in the Triticeae(2017-03) Alptekin, Burcu; Langridge, Peter; Budak, HikmetThe continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and toxicities cause large yield losses resulting in economic and environmental damage. The negative effects of abiotic stresses have increased at an alarming rate in recent years and are predicted to further deteriorate due to climate change, land degradation, and declining water supply. New technologies have provided an important tool with great potential for improving crop tolerance to the abiotic stresses: microRNAs (miRNAs). miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes such as development, environmental adaptation, and stress tolerance. miRNAs can act at both the transcriptional and post-transcriptional levels, although post-transcriptional regulation is the most common in plants where miRNAs can inhibit the translation of their mRNA targets via complementary binding and cleavage. To date, expression of several miRNA families such as miR156, miR159, and miR398 has been detected as responsive to environmental conditions to regulate stress-associated molecular mechanisms individually and/or together with their various miRNA partners. Manipulation of these miRNAs and their targets may pave the way to improve crop performance under several abiotic stresses. Here, we summarize the current status of our knowledge on abiotic stress-associated miRNAs in members of the Triticeae tribe, specifically in wheat and barley, and the miRNA-based regulatory mechanisms triggered by stress conditions. Exploration of further miRNA families together with their functions under stress will improve our knowledge and provide opportunities to enhance plant performance to help us meet global food demand.Item Acidianus Tailed Spindle Virus: a New Archaeal Large Tailed Spindle Virus Discovered by Culture-Independent Methods(2016-04) Hochstein, Rebecca A.; Amenabar, Maximiliano J.; Munson-McGee, Jacob H.; Boyd, Eric S.; Young, Mark J.The field of viral metagenomics has expanded our understanding of viral diversity from all three domains of life (Archaea, Bacteria, and Eukarya). Traditionally, viral metagenomic studies provide information about viral gene content but rarely provide knowledge about virion morphology and/or cellular host identity. Here we describe a new virus, Acidianus tailed spindle virus (ATSV), initially identified by bioinformatic analysis of viral metagenomic data sets from a high-temperature (80°C) acidic (pH 2) hot spring located in Yellowstone National Park, followed by more detailed characterization using only environmental samples without dependency on culturing. Characterization included the identification of the large tailed spindle virion morphology, determination of the complete 70.8-kb circular double-stranded DNA (dsDNA) viral genome content, and identification of its cellular host. Annotation of the ATSV genome revealed a potential three-domain gene product containing an N-terminal leucine-rich repeat domain, followed by a likely posttranslation regulatory region consisting of high serine and threonine content, and a C-terminal ESCRT-III domain, suggesting interplay with the host ESCRT system. The host of ATSV, which is most closely related to Acidianus hospitalis, was determined by a combination of analysis of cellular clustered regularly interspaced short palindromic repeat (CRISPR)/Cas loci and dual viral and cellular fluorescence in situ hybridization (viral FISH) analysis of environmental samples and confirmed by culture-based infection studies. This work provides an expanded pathway for the discovery, isolation, and characterization of new viruses using culture-independent approaches and provides a platform for predicting and confirming virus hosts. IMPORTANCE: Virus discovery and characterization have been traditionally accomplished by using culture-based methods. While a valuable approach, it is limited by the availability of culturable hosts. In this research, we report a virus-centered approach to virus discovery and characterization, linking viral metagenomic sequences to a virus particle, its sequenced genome, and its host directly in environmental samples, without using culture-dependent methods. This approach provides a pathway for the discovery, isolation, and characterization of new viruses. While this study used an acidic hot spring environment to characterize a new archaeal virus, Acidianus tailed spindle virus (ATSV), the approach can be generally applied to any environment to expand knowledge of virus diversity in all three domains of life.Item Acute Toxicity of Permethrin, Deltamethrin, and Etofenprox to the Alfalfa Leafcutting Bee(2018-05) Piccolomini, Alyssa M.; Whiten, Shavonn R.; Flenniken, Michelle L.; O'Neill, Kevin M.; Peterson, Robert K. D.Current regulatory requirements for insecticide toxicity to nontarget insects focus on the honey bee, Apis mellifera (L.; Hymenoptera: Apidae), but this species cannot represent all insect pollinator species in terms of response to insecticides. Therefore, we characterized the toxicity of pyrethroid insecticides used for adult mosquito management (permethrin, deltamethrin, and etofenprox) on a nontarget insect, the adult alfalfa leafcutting bee, Megachile rotundata (F.; Hymenoptera: Megachilidae) in two separate studies. In the first study, the doses causing 50 and 90% mortality (LD50 and LD90, respectively) were used as endpoints and 2-d-old adult females were exposed to eight concentrations ranging from 0.0075 to 0.076 μg/bee for permethrin and etofenprox, and 0.0013–0.0075 μg/bee for deltamethrin. For the second study, respiration rates of female M. rotundata were also recorded for 2 h after bees were dosed at the LD50 values to give an indication of stress response. Results indicated a relatively similar LD50 for permethrin and etofenprox, 0.057 and 0.051 μg/bee, respectively, and a more toxic response, 0.0016 μg/bee for deltamethrin. Comparatively, female A. mellifera workers have a LD50 value of 0.024 μg/bee for permethrin and 0.015 μg/bee for etofenprox indicating that female M. rotundata are less susceptible to topical doses of these insecticides, except for deltamethrin, where both A. mellifera and M. rotundata have an identical LD50 of 0.0016 μg/bee. Respiration rates comparing each active ingredient to control groups, as well as rates between each active ingredient, were statistically different (P < 0.0001). The addition of these results to existing information on A. mellifera may provide more insights on how other economically beneficial and nontarget bees respond to pyrethroids.Item Adoption of unoccupied aerial systems in agricultural research(Wiley, 2024-03) Lachowiec, Jennifer; Feldman, Max J.; Inacio Matias, Filipe; LeBauer, David; Gregory, AlexanderA comprehensive survey and subject-expert interviews conducted among agricultural researchers investigated perceived value and barriers to the adoption of unoccupied aerial systems (UASs) in agricultural research. These systems are often referred to colloquially as drones and are composed of unoccupied/uncrewed/unmanned vehicles and incorporated sensors. This study of UASs involved 154 respondents from 21 countries representing various agricultural sectors. The survey identified three key applications considered most promising for UASs in agriculture: precision agriculture, crop phenotyping/plant breeding, and crop modeling. Over 80% of respondents rated UASs for phenotyping as valuable, with 47.6% considering them very valuable. Among the participants, 41% were already using UAS technology in their research, while 49% expressed interest in future adoption. Current users highly valued UASs for phenotyping, with 63.9% considering them very valuable, compared to 39.4% of potential future users. The study also explored barriers to UAS adoption. The most commonly reported barriers were the “High cost of instruments/devices or software” (46.0%) and the “Lack of knowledge or trained personnel to analyze data” (40.9%). These barriers persisted as top concerns for both current and potential future users. Respondents expressed a desire for detailed step-by-step protocols for drone data processing pipelines (34.7%) and in-person training for personnel (16.5%) as valuable resources for UAS adoption. The research sheds light on the prevailing perceptions and challenges associated with UAS usage in agricultural research, emphasizing the potential of UASs in specific applications and identifying crucial barriers to address for wider adoption in the agricultural sector.Item Aggregatibacter actinomycetemcomitans biofilm killing by a targeted ciprofloxacin prodrug(2013-09) Reeves, Benjamin D.; Young, Mark J.; Grieco, Paul A.; Suci, Peter A.A pH-sensitive ciprofloxacin prodrug was synthesized and targeted against biofilms of the periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). The dose required to reduce the viability of a mature biofilm of Aa by ∼80% was in the range of ng cm−2 of colonized area (mean biofilm density 2.33 × 109 cells cm−2). A mathematical model was formulated that predicts the temporal change in the concentration of ciprofloxacin in the Aa biofilm as the drug is released and diffuses into the bulk medium. The predictions of the model were consistent with the extent of killing obtained. The results demonstrate the feasibility of the strategy to induce mortality, and together with the mathematical model, provide the basis for design of targeted antimicrobial prodrugs for the topical treatment of oral infections such as periodontitis. The targeted prodrug approach offers the possibility of optimizing the dose of available antimicrobials in order to kill a chosen pathogen while leaving the commensal microbiota relatively undisturbed.Item Alfalfa Weevil (Coleoptera: Curculionidae) Resistance to Lambda-cyhalothrin in the Western United States(Oxford University Press, 2022-12) Rodbell, E. A.; Hendrick, M. L.; Grettenberger, I. M.; Wanner, K. W.Forage alfalfa (Medicago sativa L. [Fabales: Fabaceae]) is a key agricultural commodity of the western region of the United States. The key insect pest of alfalfa, Hypera postica Gyllenhal (Coleoptera: Curculionidae), has developed resistance to the most common class of insecticide used to manage its damage. Alfalfa weevil samples from 71 commercial alfalfa fields located in Arizona, California, Montana, Oregon, Washington, and Wyoming were assayed for susceptibility to lambda-cyhalothrin during 2020–2022 using a laboratory concentration-response assay. Seventeen field sites representing all six states were highly resistant to lambda-cyhalothrin (resistance ratios > 79.6) and bioassay mortality often did not exceed 50% even at the highest concentration tested (3.30 µg/cm2 in 2020 and 10.00 µg/cm2 in 2021–2022). Field sites assayed with more than one pyrethroid active ingredient indicated likely cross-resistance between lambda-cyhalothrin and zeta-cypermethrin (type II pyrethroids) and variable and/or limited potential cross-resistance to permethrin (type I pyrethroid). Thirty-two field sites representing five states were susceptible to lambda-cyhalothrin (resistance ratios ranging from 1 to 20). While resistance is widespread, integrated resistance management strategies including rotating mode of action groups, applying chemical control tactics only when economic thresholds have been met, and utilizing cultural control tactics can be employed to slow the further development of resistance.Item Allelic Impacts of TaPHS1, TaMKK3, and Vp1B3 on Preharvest Sprouting of Northern Great Plains Winter Wheats(2018-12) Vetch, Justin M.; Stougaard, Robert N.; Martin, John M.; Giroux, Michael J.Preharvest sprouting (PHS) of bread wheat (Triticum aestivum L.) is a common problem that can lead to negative economic impacts arising from yield loss and undesirable end-use quality. Twenty-one winter wheats adapted to northwestern Montana were grown over two field seasons and used to assess three loci observed in previous studies to have moderate to large impacts on PHS. The main goal was to validate the usefulness of TaPHS1-3A (a Mother of Flowering Time-like gene), TaMKK3-4A (a mitogen-activated protein kinase kinase 3), and Vp1-1B (Viviparous 1) in breeding for modified dormancy before harvest, as well as to determine their potential relationships to agronomic and seed traits, specifically, falling number and α-amylase concentrations. Variation in PHS susceptibility across entries ranged from 0% sprout (fully dormant) to 95% sprout (fully nondormant) after 7 d of wetting. Most entries showed an intermediate level of sprouting susceptibility ranging between 10 and 50% sprouted. Alleles previously reported to impact dormancy were found for all three genes but TaPHS1 was the only locus found to be significantly associated with PHS. It is unclear whether variation caused by TaPHS1 may be masking the effects of the other loci, but it is evident that TaPHS1 could be used in a breeding program to modify the level of seed dormancy in winter wheat before harvest.Item Amanita alpinicola sp nov., associated with Pinus albicaulis, a western 5-needle pine(2017-07) Cripps, Cathy L.; Lindgren, Janet E.; Barge, Edward G.A new species, Amanita alpinicola, is proposed for specimens fruiting under high elevation pines in Montana, conspecific with specimens from Idaho previously described under the invalid name, Amanita alpina A.H. Sm., nom. prov. Montana specimens originated from five-needle whitebark pine (Pinus albicaulis) forests where they fruit in late spring to early summer soon after snow melt; sporocarps are found mostly half-buried in soil. The pileus is cream to pale yellow with innate patches of volval tissue, the annulus is sporadic, and the volva is present as a tidy cup situated below ragged tissue on the stipe. Analysis of the ITS region places the new species in A. sect Amanita and separates it from A. gemmata, A. pantherina, A. aprica, and the A. muscaria group; it is closest to the A. muscaria group.Item The American Society for Mammalogy, the Ecological Society of America, and the Politics of Preservation(St. Petersburg. Online., 2021) Pritchard, JamesFrom the 1920s to the early1940s, the American Society of Mammalogists and the Ecological Society of America became involved in efforts to preserve natural conditions on protected land areas, and to conserve predatory and other wildlife. Members vigorously disputed how active a scientific society should be in advocating for conservation. Charles C. Adams and Victor E. Shelford served as leaders in two major efforts aiming to shape federal policy, notably the preservation of natural landscapes and the protection of predatory animals. Their unique argument for conservation highlighted preserved landscapes with their original compliments of wildlife, emphasizing the outstanding scientific value and potential for future scientific study of protected places. Through their work on committees of their professional societies and the National Research Council, Adams, Shelford, and many of their colleagues illustrate the various avenues utilized by scientists in efforts to preserve the very essence of their research. Scientific societies took risks as members and the organizations themselves played critical roles in conservation advocacy, while the politics of science became intermixed with the politics of nature preservation.Item An Overview of the Impact of Tillage and Cropping Systems on Soil Health in Agricultural Practices(Hindawi Limited, 2023-05) Bishnu Angon, Prodipto; Anjum, Nafisa; Masuma Akter, Mst.; KC, Shreejana; Parvin Suma, Rucksana; Jannat, SadiaThere is currently a demand to grow more crops in less area as a result of urbanization’s reduction of agricultural land. As a result, soil fertility is gradually declining. To maintain soil fertility, various management methods are used in modern times. The conventional tillage method is a traditional tillage method that damages soil structure, but zero tillage can improve soil quality. By maintaining soil structure with no-tillage, biological processes are frequently improved and microbial biodiversity is increased. This review helps to understand the role of tillage as well as cropping systems in increasing crop production by maintaining soil fertility. For agricultural production and environmental protection to be sustained for future generations, soil quality must be maintained and improved in continuous cropping systems. The nodulation, nitrogen fixation, and microbial community are all impacted by different cropping systems and tillage methods. They also alter soil properties including structure, aeration, and water utilization. The impact of tillage and cropping system practices such as zero and conventional tillage systems, crop rotation, intercropping, cover cropping, cultivator combinations, and prairie strip techniques on soil fertility is carefully summarized in this review. The result highlights that conservational tillage is much better than conventional tillage for soil quality and different aspects of different tillage and their interaction. On the other hand, intercropping, crop rotation, cover cropping, etc., increase the crop yield more than monocropping. Different types of cropping systems are highlighted along with their advantages and disadvantages. Using zero tillage can increase crop production as well as maintain soil fertility which is highlighted in this review. In terms of cropping systems and tillage management, our main goal is to improve crop yield while minimizing harm to the soil’s health.Item An Overview of the Impact of Tillage and Cropping Systems on Soil Health in Agricultural Practices(Hindawi Limited, 2024-05) KC, Shreejana; Thapa, Ronika; Lamsal, Ashish; Ghimire, Shirish; Kurunju, Kavita; Shrestha, PradeepAquaponics is the sustainable approaches of present day’s world for raising fish species along with vegetables in a symbiotic association for sustainable food production. People are facing food crisis not only because of the adverse environmental condition but also due to unbalance environment population ratio. That is the main reason why the entire world is more concerned about the production of more food for security and sustainability. Present day’s modern farming system mainly focus on the productivity increasing technology and in due course individual are utilizing more chemical compounds that result in the degradation of soil. It shows great impact on ecological environment. Most of the cultivable land is also turned out as a site of construction which reduces the cultivable land on earth and ultimately arising the food insecurity. In such a circumstance a new approach of aquaponics might be beneficial where water solely covers the two third of the total mass. Aquaponics is a soilless culture which gained immense popularity as it focuses on organic production of vegetables within a single recirculating aquaponics system. Along with the sustainability it also emphasis economic efficacy and enhancement of productivity. It can be grown used on non-arable lands such as deserts, degraded soil or salty, sandy islands. So, it can integrate livelihood strategies to secure food and small incomes for landless and poor households.Item Analysis of Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata (L.) Walp) Genotypes Using Single Nucleotide Polymorphism Markers(MDPI AG, 2022-12) Thembi Gumede, Mbali; Shegro Gerrano, Abe; Beyene Amelework, Assefa; Thembinkosi Modi, AlbertCowpea (Vigna unguiculata (L.) Walp) is an important legume crop with immense potential for nutritional and food security, income generation, and livestock feed in Sub-Saharan Africa. The crop is highly tolerant to heat and drought stresses which makes it an extremely important crop for improving resilience in crop production in the face of climate change. This study was carried out to assess the genetic diversity and population structure of 90 cowpea accessions using single nucleotide polymorphism (SNP) markers. Out of 11,940 SNPs used, 5864 SNPs were polymorphic and maintained for genome diversity analysis. Polymorphic information content (PIC) values ranged from 0.22 to 0.32 with a mean value of 0.27. The model-based Bayesian STRUCTURE analysis classified 90 cowpea accessions into four subpopulations at K = 4, while the distance-based cluster analysis grouped the accessions into three distinct clusters. The analysis of molecular variance (AMOVA) revealed that 59% and 69% of the total molecular variation was attributed to among individual variation for model-based and distance-based populations, respectively, and 18% was attributed to within individual variations. Furthermore, the low heterozygosity among cowpea accessions and the high inbreeding coefficient observed in this study suggests that the accessions reached an acceptable level of homozygosity. This study would serve as a reference for future selection and breeding programs of cowpea with desirable traits and systematic conservation of these plant genetic resources.Item An annotated catalogue of the type material of Elateroidea Leach, 1815 (Coleoptera) deposited in the Coleoptera collection of the Museum of Zoology of the University of São Paulo, Brazil(2015-03) Ferreira, Vinicius S.The Museum of Zoology of the University of São Paulo (MZSP) houses one of the most important Coleoptera collections of Brazil and Neotropical Region with nearly 900,000 adult mounted material and about 1,500,000 specimens to be mounted. The superfamily Elateroidea Leach, 1815 (including Cantharoidea) comprises about 24,077 described species in 17 families. The MZSP owns type material of Brachypsectridae LeConte & Horn, 1883, Cantharidae, 1856 (1815), Cerophytidae Latreille, 1834, Elateridae Leach 1815, Eucnemidae Eschscholtz, 1829, Lampyridae Rafinesque, 1815, Lycidae Laporte, 1836, Phengodidae LeConte, 1861 and Rhinorhipidae Lawrence, 1988. This catalogue includes type material of 166 species distributed in 69 genera. Among 1,223 type specimens, are 86 holotypes, 1,133 paratypes, 2 allotypes, 1 lectotype and 1 paralectotype.Item Antifungal Activities of Volatile Secondary Metabolites of Four Diaporthe Strains Isolated from Catharanthus roseus(2018-05) Yan, Dong-Hui; Song, Xiaoyu; Li, Hongchang; Luo, Tushou; Dou, Guiming; Strobel, Gary A.Four endophytic fungi were isolated from the medicinal plant, Catharanthus roseus, and were identified as Diaporthe spp. with partial translation elongation factor 1-alpha (TEF1), beta-tubulin (TUB), histone H3 (HIS), calmodulin (CAL) genes, and rDNA internal transcribed spacer (ITS) region (TEF1-TUB-HIS--CAL-ITS) multigene phylogeny suggested for species delimitation in the Diaporthe genus. Each fungus produces a unique mixture of volatile organic compounds (VOCs) with an abundant mixture of terpenoids analyzed by headspace solid-phase microextraction (SPME) fiber-GC/MS. These tentatively-detected terpenes included α-muurolene, β-phellandrene, γ-terpinene, and α-thujene, as well as other minor terpenoids, including caryophyllene, patchoulene, cedrene, 2-carene, and thujone. The volatile metabolites of each isolate showed antifungal properties against a wide range of plant pathogenic test fungi and oomycetes, including Alternaria alternata, Botrytis cinerea, Colletotrichum gloeosporioides, Fusarium graminearum, and Phytophthora cinnamomi. The growth inhibition of the pathogens varied between 10% and 60% within 72 h of exposure. To our knowledge, the endophytic Diaporthe-like strains are first reported from Catharanthus roseus. VOCs produced by each strain of the endophytic Diaporthe fungi were unique components with dominant monoterpenes comparing to known Diaporthe fungal VOCs. A discussion is presented on the inhibitive bioactivities of secondary metabolites among endophytic Diaporthe fungi and this medicinal plant.Item Antiviral Activity of the PropylamylatinTM Formula against the Novel Coronavirus SARS-CoV-2 In Vitro Using Direct Injection and Gas Assays in Virus Suspensions(MDPI, 2021-03) Brown, Ashley N.; Strobel, Gary; Hanrahan, Kaley C.; Sears, JoeSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of novel coronavirus disease 2019 (COVID-19), has become a severe threat to global public health. There are currently no antiviral therapies approved for the treatment or prevention of mild to moderate COVID-19 as remdesivir is only approved for severe COVID-19 cases. Here, we evaluated the antiviral potential of a Propylamylatin formula, which is a mixture of propionic acid and isoamyl hexanoates. The Propylamylatin formula was investigated in gaseous and liquid phases against 1 mL viral suspensions containing 105 PFU of SARS-CoV-2. Viral suspensions were sampled at various times post-exposure and infectious virus was quantified by plaque assay on Vero E6 cells. Propylamylatin formula vapors were effective at inactivating infectious SARS-CoV-2 to undetectable levels at room temperature and body temperature, but the decline in virus was substantially faster at the higher temperature (15 min versus 24 h). The direct injection of liquid Propylamylatin formula into viral suspensions also completely inactivated SARS-CoV-2 and the rapidity of inactivation occurred in an exposure dependent manner. The overall volume that resulted in 90% viral inactivation over the course of the direct injection experiment (EC90) was 4.28 ls. Further investigation revealed that the majority of the antiviral effect was attributed to the propionic acid which yielded an overall EC90 value of 11.50 ls whereas the isoamyl hexanoates provided at most a 10-fold reduction in infectious virus. The combination of propionic acid and isoamyl hexanoates was much more potent than the individual components alone, suggesting synergy between these components. These findings illustrate the therapeutic promise of the Propylamylatin formula as a potential treatment strategy for COVID-19 and future studies are warranted.