Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
1 results
Search Results
Item Identification of economic wireworms using traditional and molecular methods(Montana State University - Bozeman, College of Agriculture, 2013) Etzler, Frank Eric; Chairperson, Graduate Committee: Michael A. Ivie; Kevin W. Wanner, Anuar Morales-Rodriquez and Michael A. Ivie were co-authors of the article, 'DNA barcoding to improve the species level management of wireworms' submitted to the journal 'Journal of economic entomology' which is contained within this thesis.; Michael A. Ivie was a co-author of the article, 'Review of the Limonius canus LeConte, 1853 (Coleoptera: Elateridae)' submitted to the journal 'The coleopterists bulletin' which is contained within this thesis.Interest in wireworms has grown in the past decade due to their increasing pest status, largely due to the removal of effective seed treatments from the market. Currently, there is no effective Integrated Pest Management (IPM) strategy to control for wireworms, due to the diverse number of species that make up complexes in cropland. The purpose of this study was to determine what wireworm species are present in Montana's croplands and develop tools to make species concepts accessible to non-specialists. This was done using DNA barcoding to associate wireworms with adults. DNA barcoding was done by amplifying the Cytochrome-Oxidase I (COI) region of the mitochondrial genome. Twenty-nine (29) species were successfully sequenced and 13 species had adult and larval associations made, including three new associations. In addition, a LUCID pictorial key was also created to help identify species occurring in Montana. A LUCID key is a computer-based key where a user identifies a specimen with the help of pictures of each character. During the wireworm study, one species-group in the genus Limonius was found to include many economic species, including two that are important in Montana. This group needed to be reevaluated due to controversies raised in a recent revision, many of which dealt with economic species. With the combined use of morphological characters and DNA data, eight species are now recognized as belonging to the group. All of these subprojects show the combined use of DNA and morphology as essential to fully understanding wireworm species. With a more precise knowledge of the species that make up the complexes in Montana's croplands, we can focus on developing IPM stratetgies for efficient control.