Theses and Dissertations at Montana State University (MSU)

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Stigmatic spectroscopy of the solar atmosphere in the vacuum-ultraviolet
    (Montana State University - Bozeman, College of Letters & Science, 2020) Courrier, Hans Thomas; Chairperson, Graduate Committee: Charles C. Kankelborg; Charles C. Kankelborg was a co-author of the article, 'Using local correlation tracking to recover solar spectral information from a slitless spectrograph' in the journal 'Journal of astronomical telescopes and imaging systems, SPIE' which is contained within this dissertation.; Charles C. Kankelborg, Bart De Pontieu and Jean-Pierre Wulser were co-authors of the article, 'An on orbit determination of point spread functions for the interface region imaging spectrograph' in the journal 'Solar physics' which is contained within this dissertation.; Charles C. Kankelborg, Amy R. Winebarger, Ken Kobayashi, Brent Beabout, Dyana Beabout, Ben Carroll, Jonathan W. Cirtain, James A. Duffy, Carlos Gomez, Eric M. Gullikson, Micah Johnson, Jacob D.Parker, Laurel A. Rachmeler, Roy T. Smart, Larry Springer and David L. Windt were co-authors of the article, 'The EUV snapshot imaging spectrograph (ESIS)' which is contained within this dissertation.
    The solar atmosphere presents a complicated observing target since tremendous variability exists in solar features over a wide range of spatial, spectral, and temporal scales. Stigmatic spectrographs are indispensable tools that provide simultaneous access to spatial context and spectroscopy, enabling the diagnosis of solar events that cannot be accomplished by imaging or spectroscopy alone. In this dissertation I develop and apply a novel technique for on orbit spectrograph calibration, recover co-temporal Doppler shifts of widely spaced solar features, and describe a new design for a slitless solar spectrograph. The Interface Region Imaging Spectrograph, (IRIS) is currently the highest spatial and spectral resolution, space based, solar spectrograph. Ongoing calibration is important to maintaining the quality of IRIS data. Using a Mercury transit against the backdrop of the dynamic solar atmosphere, I characterize the spatial point spread functions of the spectrograph with a unique, iterative, blind, deconvolution algorithm. An associated deconvolution routine improves the ability of IRIS to resolve spatially compact solar features. This technique is made freely available to the community for use with past and future IRIS observations. The Multi-Order Extreme Ultraviolet Spectrograph (MOSES) is a slitless spectrograph that collects co-temporal, but overlapping spatial and spectral images of solar spectral lines. Untangling these images presents an ill-posed inversion problem. I develop a fast, automated method that returns Doppler shifts of compact solar objects over the entire MOSES field of view with a minimum of effort and interpretation bias. The Extreme ultraviolet Snapshot Imaging Spectrograph (ESIS) is a slitless spectrograph that extends the MOSES concept. I describe this new instrument, which is far more complex and distinct as compared to MOSES, and the contributions I made in the form of optical design and optimization. ESIS will improve the quality of spatial and spectral information obtained from compact and extended solar features, and represents the next step in solar slitless spectroscopy. Taken together, these contributions advance the field by supporting existing instrumentation and by developing new instrumentation and techniques for future observations of the solar atmosphere.
  • Thumbnail Image
    Item
    Development of a micro pulsed LIDAR and a singly-resonant optical parametric oscillator for CO 2 DIAL for use in atmospheric studies
    (Montana State University - Bozeman, College of Letters & Science, 2017) Chantjaroen, Chat; Chairperson, Graduate Committee: Kevin S. Repasky
    According to the Fifth Assessment Report (AR5) from the Intergovernmental Panel on Climate Change (IPCC), aerosols and CO 2 are the largest contributors to anthropogenic radiative forcing--net negative for aerosols and positive for CO 2. This relates to the amount of impact that aerosols and CO 2 can have on our atmosphere and climate system. CO 2 is the predominant greenhouse gas in the atmosphere and causes great impacts on our climate system. Recent studies show that a less well known atmospheric component--aerosols, which are solid particles or liquid droplets suspended in air, can cause great impact on our climate system too. They can affect our climate directly by absorbing and scattering sunlight to warm or cool our climate. They can also affect our climate indirectly by affecting cloud microphysical properties. Typically sulfate aerosols or sea salts act as condensation nuclei for clouds to form. Clouds are estimated to shade about 60% of the earth at any given time. They are preventing much of the sunlight from reaching the earth's surface and are helping with the flow of the global water cycle. These are what permit lifeforms on earth. In the IPCC report, both aerosols and CO 2 also have the largest uncertainties and aerosols remains at a low level of scientific understanding. These indicate the need of more accurate measurements and that new technologies and instruments needs to be developed. This dissertation focuses on the development of two instruments--a scannable Micro Pulsed Lidar (MPL) for atmospheric aerosol measurements and an Optical Parametric Oscillator (OPO) for use as a transmitter in a Differential Absorption Lidar (DIAL) for atmospheric CO2 measurements. The MPL demonstrates successful measurements of aerosols. It provides the total aerosol optical depth (AOD) and aerosol lidar ratio (S a) that agree well with an instrument used by the Aerosol Robotic Network (AERONET). It also successfully provides range-resolved information about aerosols that AERONET instrument is incapable of. The range-resolved information is important in the study of the sources and sinks of aerosols. The OPO results show good promise for its use as a DIAL transmitter.
  • Thumbnail Image
    Item
    Use of a two color LIDAR system to study atmospheric aerosols
    (Montana State University - Bozeman, College of Letters & Science, 2010) Todt, Benjamin David; Chairperson, Graduate Committee: Kevin S. Repasky
    This thesis demonstrates the use of a two color lidar (light detection and ranging) instrument for the purpose of studying atmospheric aerosols. The instrument and the analysis techniques are explained and discussed to provide the necessary back-ground. The calibration is discussed and demonstrated followed by an example of the data analysis. The lidar's combination with a digital camera used to image cloud formations is then discussed and preliminary results are displayed.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.