Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
7 results
Search Results
Item Elucidating the impacts of structural heterogeneity on excited state dynamics in solution-processed materials(Montana State University - Bozeman, College of Letters & Science, 2024) Afrin, Sajia; Chairperson, Graduate Committee: Erik Grumstrup; This is a manuscript style paper that includes co-authored chapters.Solution-processed inorganic and organic semiconductors hold enormous promises due to their low manufacturing cost, scalability, and compatibility with flexible substrates. However, solution processing techniques do not require control over crystal growth, which can lead to structural defects within the crystal structure. The defects within solution-processed semiconductors can create significant challenges in optimizing device functionality; therefore, it is crucial to understand the impact of structural defects on photophysical properties. Traditional ensemble measurement techniques can conceal the effects of microscale structural defects on functional properties in the structure-averaged observation of solution-processed materials. The work presented in this dissertation employs time-resolved and spectrally resolved microscopy techniques to investigate the influence of structural heterogeneity on the photophysical properties of microscale solution-processed materials. Measurements collected across multiple discrete and highly crystalline domains of multiple classes of solution-processed materials have helped establish a relationship between the functionality and the local structure of these materials. Initially, the focus was on elucidating anisotropic carrier transport in lead halide perovskites by investigating lattice strain and energetic distribution in microcrystals. Later, the focus shifted towards characterizing and understanding the impact of structural defects on the excited state dynamics in another class of solution-processed material called metal-organic frameworks (MOFs). PCN-222 exhibited rapid exciton transport with time-averaged diffusion coefficients ranging from 0.27 to 1.0 cm2/s and subdiffusive behavior, showing transport slowing on the tens of ps time scale. Subdiffusivity indicated that excited states were rapidly transported through the porphyrin network of PCN-222 before being trapped. Moreover, the first transport measurements and transient absorption microscopic measurements in PCN-222 are reported here. Photoluminescence quenching and heterogeneous relaxation pathways were noted in regions with higher structural heterogeneity. Furthermore, the spectral evolution of porphyrinic PCN-222 MOF was investigated, which revealed excitation-dependent chromophore coupling in the MOF structure. Soret band excitation with enhanced coupling can create more mobile excited states, whereas Q band excitation with reduced coupling will generate fewer mobile excited states. Excitation-dependent chromophore coupling strongly dictates the transport and relaxation properties in MOF microstructures that also illustrate the impact of structural defects on the excited state transport and relaxation dynamics. A significant spectral shift has also been observed in microrods stemming from structural heterogeneity. These findings contribute to a deeper understanding of the impact of structural defects on the photophysical properties of solution-processed materials, facilitating the development of optimized semiconductor devices for various applications. The results reported in this dissertation will not only continue to aid in the characterization of MOFs but will also advance our understanding of excited state dynamics in a variety of solution-processed materials.Item Thermalization and exciton localization in 2D semiconductors(Montana State University - Bozeman, College of Letters & Science, 2023) Strasbourg, Matthew Christopher; Chairperson, Graduate Committee: Nick Borys; This is a manuscript style paper that includes co-authored chapters.2D semiconductors are a promising class of materials to investigate for applications in the next generation of photonic devices. They can be used to generate quantum light and also exhibit correlated many-body phenomena. Many of the novel optoelectronic properties of 2D semiconductors are associated with strongly-bound hydrogen-like states known as excitons. Excitons in 2D semiconductors have binding energies on the order of 100s of meV and are stable at room temperature. At low temperatures, higher-order excitonic states such as charged excitons and biexcitons--multiple-bound excitons that are like hydrogen molecules-- and localized excitons that emit quantum light are also observed. Whether excited optically or electronically, a diversity of high-energy excitons and free carriers are produced directly after excitation. The relaxation and thermalization of these initial states influence the formation of excitons, biexcitons, and localized excitons. Here, I present work that (i) investigates the thermalization of excited states in a prototypical 2D semiconductor, monolayer (1L-) WSe2, and reports the discovery that the generation of charged biexcitons is enhanced with increasing photoexcitation energy, (ii) shows the emergence of quantum emitters (QEs) in a new 2D QE platform: 1L-WSe2 nanowrinkle arrays induced by Au nano stressors, and (iii) uses a novel method to classify the excited-state dynamics of 2D QEs and differentiate emitter populations. A suite of low-temperature energy- and time- resolved optical spectroscopies are used to conduct this work. This work shows how excited state thermalization affects the formation of exciton and biexcitons and investigates the optical properties of an emergent class of 2D quantum light emitters.Item Transient passive mode-locked ND:YAG laser using a semiconductor saturable absorber mirror(Montana State University - Bozeman, College of Letters & Science, 2022) Shaffer, Heather Rose; Chairperson, Graduate Committee: Joseph A. ShawQ-switched-mode-locking in a Nd:YAG bulk resonator was demonstrated using a semiconductor saturable absorber mirror (SESAM). A 10-W-pulsed-diode-pumped Nd:YAG laser system at Quantel USA by Lumibird, Inc. was adapted for mode-locking operation in a breadboard setup. Three SESAM mirrors were tested with initial reflectivities R 0=85%, 90%, and 95% in several cavity configurations to show enhanced sub-nanosecond pulse modulation at the free spectral range of each resonator. Transient Q-switched and long-pulse envelopes are shown with underlying mode-locked pulse modulation.Item The development of superresolution spectroscopic techniques and characterization of microscale exciton diffusion in organic semiconducting polymers(Montana State University - Bozeman, College of Letters & Science, 2018) Massaro, Eric Stephen; Chairperson, Graduate Committee: Erik Grumstrup; Andrew H. Hill and Erik M. Grumstrup were co-authors of the article, 'Superresolution structured pump-probe microscopy' in the journal 'ACS Photonics' which is contained within this thesis.; Andrew H. Hill, Casey L. Kennedy and Erik M. Grumstrup were co-authors of the article, 'Imaging theory of structured pump-probe microscopy' in the journal 'Optics Express' which is contained within this thesis.; Erik M. Grumstrup was a co-author of the article, 'Label-free saturated structured excitation microscopy' in the journal 'Photonics' which is contained within this thesis.; Erik M. Grumstrup was a co-author of the article, 'Exceptionally fast nanoscale exciton diffusion in donor-acceptor polymer thin films' which is contained within this thesis.; Erik M. Grumstrup was a co-author of the article, 'Toward direct imaging of sub-10 nm carrier diffusion lengths by differential detection pump-probe microscopy' which is contained within this thesis.Disordered semiconducting materials offer cost effective, solution processable alternatives to highly crystalline semiconducting materials for utilization in a variety of optoelectronic devices. However, characterization of these complex materials systems using bulk spectroscopic methods is heavily influenced by chemical and morphological heterogeneity inherent to the material. The experiments described in this thesis are designed to improve the fundamental understanding of the photophysical processes in disordered solution processed semiconducting materials by developing and utilizing high spatial resolution spectroscopic methods. Chapters 2-4 will outline the experimental and theoretical development of two superresolution spectroscopic techniques. First (chapters 2 & 3), structured pump-probe microscopy (SPPM) utilizes a structured excitation profile along with a diffraction limited probe pulse to achieve ~100 nm spatial resolution. Using SPPM it is also possible to collect time resolved spectroscopic data from a sub-diffraction limited volume. Second (chapter 4), label-free saturated structured excitation microscopy (LF-SSEM) is theoretically developed. LF-SSEM is experimentally similar to SPPM but exploits the saturation of the absorption process to achieve even greater resolution enhancement. Here, simulated LF-SSEM is shown to achieve ~33 nm spatial resolution. Chapter 5 demonstrates the utilization of PPM to investigate exciton transport in the organic semiconducting polymer (OSP), poly [N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT). Although OSPs have shown great promise for use in a variety of optoelectronic applications, much remains un-known about their excited state dynamics. The data reported here represents a significant contribution to the rapidly growing wealth of knowledge pertaining to OSP systems. Specifically, the microscale exciton diffusivity observed in PCDTBT thin films using PPM is found to reach 3.2 cm 2/s. Chapter 6 examines a technique in the early stages of development and optimization that is able to detect excited state carrier diffusion with increased sensitivity and accuracy compared to PPM. Differential detection pump-probe microscopy (DDPPM) uses two probe pulses to selectively eliminate the signal of carriers that have not diffused beyond the boundaries of the initial excitation. The experiments described within this dissertation are diverse, yet the common goal is to increase and improve the knowledge of photophysical properties in disordered semi-conducting materials. This goal takes two forms in the development of novel spectroscopic methodology and the characterization of complex materials using PPM. The singular result is the advancement of basic science pertaining to complex semiconducting materials systems.Item Study of collective excitations and Schottky barrier formations at III-V semiconductor surfaces and interfaces(Montana State University - Bozeman, College of Letters & Science, 1991) Meng, YuanItem Tight-binding methods for the study of surface states on semiconductors(Montana State University - Bozeman, College of Letters & Science, 1978) Schwalm, William ArthurItem Junction analysis and temperature effects in semi-conductor heterojunctions(Montana State University - Bozeman, College of Engineering, 1974) Tandan, Naresh