Center for Biofilm Engineering (CBE)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334
At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.
Browse
8 results
Search Results
Item Escherichia coli O157:H7 attachment and persistence within root biofilm of common treatment wetlands plants(2017-01) VanKempen-Fryling, Rachel J.; Camper, Anne K.Pathogen retention and subsequent release within the rhizosphere of wastewater treatment wetlands may be a concern for human health. To address this concern, the enteric pathogen Escherichia coli O157:H7 with a DsRed plasmid insertion was used as a model pathogenic organism in an open-air chemostat reactor with constant flow of simulated wastewater. Colonization and persistence of the organism was tracked on roots of two obligate wetland plant species, Carex utriculata and Schoenoplectus acutus, originally grown in pilot scale wetland reactors. Teflon nylon string, clean and with existing indigenous biofilm, was used as an inert surface control. Epifluorescence microscopy and qPCR were used to verify E. coli O157:H7 abundance for up to 1 week. Initial attachment was seen on all surfaces, with colonization decreasing through 1 week. qPCR showed preferential association of the pathogen with roots over the nylon. There was a significant difference between plant type; S. acutus showed significantly higher numbers compared to C. utriculata. E. coli O157:H7 binding and persistence on root surfaces may be a means of survival in treatment wetlands.Item Assessing biofouling on polyamide reverse osmosis (RO) membrane surfaces in a laboratory system(2010-04) Khan, Mohiuddin M. T.; Stewart, Philip S.; Moll, D. J.; Mickols, W. E.; Burr, Mark D.; Nelson, Sara E.; Camper, Anne K.Biofouling of reverse osmosis (RO) membranes is a major impediment in both wastewater reuse and desalination of sea/brackish waters. A benefit to the industry would be a simple screening approach to evaluate biofouling resistant RO membranes for their propensity to biofoulants. To observe the relationship between initial membrane productivity and control of biofilm formation governed by surface modification to the aromatic polyamide thin-film composite RO membranes, three different RO membranes developed by the FilmTec Corporation including FilmTec’s commercial membrane BW30 (RO#1) and two experimental membranes (RO #2 and #3) were used. RO #2 and RO #3 were modified with a proprietary aliphatic group and with an extra proprietary aromatic group, respectively. Membrane swatches were fixed on coupons in rotating disk reactor systems without filtration and exposed to water with indigenous organisms supplemented with 1.5 mg/L organic carbon under continuous flow. After biofouling had developed, the membranes were sacrificed and subjected to several analyses. Staining and epifluorescence microscopy revealed more cells on RO #2 and #3 compared to RO #1. Based on image analysis of 5-µmthick stained biofoulant cryo-sections, the accumulation of hydrated biofoulants on RO #1 and #3 were from 0.87 to 1.26µm/day, which was lower than that on RO#2 (2.19µm/day). Biofoulants increased the hydrophobicity of RO #2 to the greatest amount, up to 32°, as determined by contact angle. In addition, a wide range of changes of the chemical elements of the RO surfaces was observed with X-ray photoelectron spectroscopy analysis. RO #2 with the highest initial membrane productivity showed the poorest biofouling resistance. A combination of these novel approaches showed good agreement and suggested that membrane productivity, heterogeneity of anti-biofouling agents on membrane surface, stability of surface chemical elements and the role of virgin RO surface hydrophobicity should be jointly considered during the development of anti-biofouling polyamide thin-film RO surfaces.Item Floating treatment wetlands for domestic wastewater treatment(2011-11) Faulwetter, J. L.; Burr, Mark D.; Cunningham, Alfred B.; Stewart, Frank M.; Camper, Anne K.; Stein, Otto R.Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO3-N. Complete removal of NO3-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.Item Comparing the chlorine disinfection of detached biofilm clusters with those of sessile biofilms and planktonic cells in single-and dual-species cultures(2011-10) Behnke, S.; Parker, Albert E.; Woodall, Dawn; Camper, Anne K.Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture.Item Viable real-time PCR in environmental samples: Can all data be interpreted directly?(2011-01) Fittipaldi, M.; Codony, F.; Adrados, B.; Camper, Anne K.; Morato, J.Selective nucleic acid intercalating dyes—ethidium monoazide (EMA) and propidium monoazide (PMA)—represent one of the most successful recent approaches to detect viable cells (as defined by an intact cell membrane) by PCR and have been effectively evaluated in different microorganisms. However, some practical limitations were found, especially in environmental samples. The aim of this work was to show that in the application of viable real-time PCR, there may be significant biases and to propose a strategy for overcoming some of these problems. We present an approach based on the combination of three real-time PCR amplifications for each sample that should provide an improved estimation of the number of viable cells. This approach could be useful especially when it is difficult to determine a priori how to optimize methods using PMA or EMA. Although further studies are required to improve viable real-time PCR methods, the concept as outlined here presents an interesting future research direction.Item Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces(2011-01) Khan, Mohiuddin M. T.; Stewart, Philip S.; Moll, D. J.; Mickols, W. E.; Nelson, Sara E.; Camper, Anne K.Biofouling is a major reason for flux decline in the performance of membrane-based water and wastewater treatment plants. Initial biochemical characterization of biofilm formation potential and biofouling on two commercially available membrane surfaces from FilmTec Corporation were investigated without filtration in laboratory rotating disc reactor systems. These surfaces were polyamide aromatic thin-film reverse osmosis (RO) (BW30) and semi-aromatic nanofiltration (NF270) membranes. Membrane swatches were fixed on removable coupons and exposed to water with indigenous microorganisms supplemented with 1.5 mg l−1 organic carbon under continuous flow. After biofilms formed, the membrane swatches were removed for analyses. Staining and epifluorescence microscopy revealed more cells on the RO than on the NF surface. Based on image analyses of 5-μm thick cryo-sections, the accumulation of hydrated biofoulants on the RO and NF surfaces exceeded 0.74 and 0.64 μm day−1, respectively. As determined by contact angle the biofoulants increased the hydrophobicity up to 30° for RO and 4° for NF surfaces. The initial difference between virgin RO and NO hydrophobicities was ∼5°, which increased up to 25° after biofoulant formation. The initial roughness of RO and NF virgin surfaces (75.3 nm and 8.2 nm, respectively) increased to 48 nm and 39 nm after fouling. A wide range of changes of the chemical element mass percentages on membrane surfaces was observed with X-ray photoelectron spectroscopy. The initial chemical signature on the NF surface was better restored after cleaning than the RO membrane. All the data suggest that the semi-aromatic NF surface was more biofilm resistant than the aromatic RO surface. The morphology of the biofilm and the location of active and dead cell zones could be related to the membrane surface properties and general biofouling accumulation was associated with changes in the surface chemistry of the membranes, suggesting the validity of the combination of these novel approaches for initial assessment of membrane performance.Item Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms(2013-01) Faulwetter, J. L.; Burr, Mark D.; Parker, Albert E.; Stein, Otto R.; Camper, Anne K.Constructed wetlands offer an effective means for treatment of wastewater from a variety of sources. An understanding of the microbial ecology controlling nitrogen, carbon and sulfur cycles in constructed wetlands has been identified as the greatest gap for optimizing performance of these promising treatment systems. It is suspected that operational factors such as plant types and hydraulic operation influence the subsurface wetland environment, especially redox, and that the observed variation in effluent quality is due to shifts in the microbial populations and/or their activity. This study investigated the biofilm associated sulfate reducing bacteria and ammonia oxidizing bacteria (using the dsrB and amoA genes, respectively) by examining a variety of surfaces within a model wetland (gravel, thick roots, fine roots, effluent), and the changes in activity (gene abundance) of these functional groups as influenced by plant species and season. Molecular techniques were used including quantitative PCR and denaturing gradient gel electrophoresis (DGGE), both with and without propidium monoazide (PMA) treatment. PMA treatment is a method for excluding from further analysis those cells with compromised membranes. Rigorous statistical analysis showed an interaction between the abundance of these two functional groups with the type of plant and season (p<0.05). The richness of the sulfate reducing bacterial community, as indicated by DGGE profiles, increased in planted vs. unplanted microcosms. For ammonia oxidizing bacteria, season had the greatest impact on gene abundance and diversity (higher in summer than in winter). Overall, the primary influence of plant presence is believed to be related to root oxygen loss and its effect on rhizosphere redox.Item Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor(2014-06) Khan, Mohiuddin M. T.; Danielsen, S.; Johansen, K.; Nelson, Sara E.; Camper, Anne K.Application of environmentally friendly enzymes to remove thin-film composite (TFC) reverse osmosis (RO) membrane biofoulants without changing the physico-chemical properties of the RO surface is a challenging and new concept. Eight enzymes from Novozyme A/S were tested using a commercially available biofouling-resistant TFC polyamide RO membrane (BW30, FilmTech Corporation, Dow Chemical Co.) without filtration in a rotating disk reactor system operated for 58 days. At the end of the operation, the accumulated biofoulants on the TFC RO surfaces were treated with the three best enzymes, Subtilisin protease and lipase; dextranase; and polygalacturonase (PG) based enzymes, at neutral pH (~7) and doses of 50, 100, and 150 ppm. Contact times were 18 and 36 h. Live/dead staining, epifluorescence microscopy measurements, and 5 µm thick cryo-sections of enzyme and physically treated biofouled membranes revealed that Subtilisin protease- and lipase-based enzymes at 100 ppm and 18 h contact time were optimal for removing most of the cells and proteins from the RO surface. Culturable cells inside the biofilm declined by more than five logs even at the lower dose (50 ppm) and shorter incubation period (18 h). Subtilisin protease- and lipase-based enzyme cleaning at 100 ppm and for 18 h contact time restored the hydrophobicity of the TFC RO surface to its virgin condition while physical cleaning alone resulted in a 50° increase in hydrophobicity. Moreover, at this optimum working condition, the Subtilisin protease- and lipase-based enzyme treatment of biofouled RO surface also restored the surface roughness measured with atomic force microscopy and the mass percentage of the chemical compositions on the TFC surface estimated with X-ray photoelectron spectroscopy to its virgin condition. This novel study will encourage the further development and application of enzymes to remove biofoulants on the RO surface without changing its surface properties.