Center for Biofilm Engineering (CBE)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334
At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.
Browse
4 results
Search Results
Item A Candida albicans early stage biofilm detachment event in rich medium(2009-02) Sellam, Adnane; Al-Niemi, Thamir; McInnerney, Kathleen; Brumfield, Susan; Nantel, Andre; Suci, Peter A.Background: Dispersal from Candida albicans biofilms that colonize catheters is implicated as a primary factor in the link between contaminated catheters and life threatening blood stream infections (BSI). Appropriate in vitro C. albicans biofilm models are needed to probe factors that induce detachment events. Results: Using a flow through system to culture C. albicans biofilms we characterized a detachment process which culminates in dissociation of an entire early stage biofilm from a silicone elastomer surface. We analyzed the transcriptome response at time points that bracketed an abrupt transition in which a strong adhesive association with the surface is weakened in the initial stages of the process, and also compared batch and biofilm cultures at relevant time points. K means analysis of the time course array data revealed categories of genes with similar patterns of expression that were associated with adhesion, biofilm formation and glycoprotein biosynthesis. Compared to batch cultures the biofilm showed a pattern of expression of metabolic genes that was similar to the C. albicans response to hypoxia. However, the loss of strong adhesion was not obviously influenced by either the availability of oxygen in the medium or at the silicone elastomer surface. The detachment phenotype of mutant strains in which selected genes were either deleted or overexpressed was characterized. The microarray data indicated that changes associated with the detachment process were complex and, consistent with this assessment, we were unable to demonstrate that transcriptional regulation of any single gene was essential for loss of the strong adhesive association. Conclusion: The massive dispersal of the early stage biofilm from a biomaterial surface that we observed is not orchestrated at the level of transcriptional regulation in an obvious manner, or is only regulated at this level by a small subpopulation of cells that mediate adhesion to the surface.Item Staphylococcus aureus biofilm and planktonic cultures differentially impact gene expression, MAPK phosphorylation, and cytokine production in human keratinocytes(2011-06) Secor, Patrick R.; James, Garth A.; Fleckman, Philip; Olerud, John E.; McInnerney, Kathleen; Stewart, Philip S.Background: Many chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. Staphylococcus aureus is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen.Results: The impact of S. aureus soluble products in biofilm-conditioned medium (BCM) or in planktonicconditioned medium (PCM) on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic S. aureus was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, S. aureus biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms.Conclusions: Collectively the results indicate that S. aureus biofilms induce a distinct inflammatory response compared to their planktonic counterparts. The differential gene expression and production of inflammatory cytokines by biofilm and planktonic cultures in keratinocytes could have implications for the formation and persistence of chronic wounds. The formation of a biofilm should be considered in any study investigating host response to bacteria.Item Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population(2012-02) Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.; Franklin, Michael J.Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state.Item Phevalin (aureusimine B) Production by Staphylococcus aureus Biofilm and Impacts on Human Keratinocyte Gene Expression(2012-07) Secor, Patrick R.; Jennings, Laura K.; James, Garth A.; Kirker, Kelly R.; deLancey Pulcini, Elinor; McInnerney, Kathleen; Gerlach, Robin; Livinghouse, Tom; Hilmer, Jonathan K.; Bothner, Brian; Fleckman, Philip; Olerud, John E.; Stewart, Philip S.Staphylococcus aureus biofilms are associated with chronic skin infections and are orders of magnitude more resistant to antimicrobials and host responses. S. aureus contains conserved nonribosomal peptide synthetases that produce the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively). The biological function of these compounds has been speculated to be involved in virulence factor gene expression in S. aureus, protease inhibition in eukaryotic cells, and interspecies bacterial communication. However, the exact biological role of these compounds is unknown. Here, we report that S. aureus biofilms produce greater amounts of phevalin than their planktonic counterparts. Phevalin had no obvious impact on the extracellular metabolome of S. aureus as measured by high-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. When administered to human keratinocytes, phevalin had a modest effect on gene expression. However, conditioned medium from S. aureus spiked with phevalin amplified differences in keratinocyte gene expression compared to conditioned medium alone. Phevalin may be exploited as potential biomarker and/or therapeutic target for chronic, S. aureus biofilm-based infections.